期刊文献+

位置社交网络的潜在好友推荐模型研究 被引量:7

A Potential Friends Recommendation Model for Location-Based Social Network
下载PDF
导出
摘要 为了提高位置社交网络的服务便捷性和用户感受度,与位置相关的推荐服务越来越具有重要意义和应用需求。提出的潜在好友推荐模型主要是根据签到位置的相似度及好友相似度进行潜在用户推荐。通过用户的好友关系、签到特性及签到历史记录,计算用户在各个位置兴趣点的位置权重,再分别利用位置权重及好友关系计算用户的位置相似度和好友相似度,最后根据用户位置和好友关系的综合相似度进行潜在用户推荐。实验结果表明,提出的潜在好友推荐模型是切实有效的。 To make service convenient and improve user experience degrees, recommendation service has becomemore and more important to users in the location-based social network (LBSN). An improved potential friendsrecommendation in LBSN, which is based on the relationship among friends and the similarity of locations, wasproposed. First of all, the user interest pointsin each position weight with friends' relationship, check-in feature andhistorical recordwere calculated. Then position weight and the friend relationship were used to calculate the friends'similarity and location similarity. Finally, potential friends to user based on the friends' similarity and locationsimilarity were recommended. The experimental results show that the proposed model is effective.
出处 《电信科学》 北大核心 2014年第10期71-77,共7页 Telecommunications Science
基金 国家自然科学基金资助项目(No.61370139) 网络文化与数字传播北京市重点实验室基金资助项目(No.ICDD201309) 北京市属高等学校创新团队建设与教师职业发展计划基金资助项目(No.IDHT20130519)
关键词 位置服务 位置社交网络 潜在好友 推荐模型 位置相似度 location-based service, location-based social network, potential friend, recommendation model, locationsimilarity
  • 相关文献

参考文献15

  • 1翟红生,于海鹏.在线社交网络中的位置服务研究进展与趋势[J].计算机应用研究,2013,30(11):3221-3227. 被引量:11
  • 2Hruschka D J,Henrich J.Friendship,cliquishness,and the emergence of cooperation.Journal of Theoretical Biology,2006,239 (1):1-15. 被引量:1
  • 3Li Q,Zheng Y,Xie X,et al.Mining user similarity based on location history.Proceedings of the 16th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems,New York,USA,2008:31-34. 被引量:1
  • 4Hung C C,Chang C W,Peng W C.Mining trajectory profiles for discovering user communities.Proceedings of the International Workshop on Location Based Social Networks,New York,USA,2009:1-8. 被引量:1
  • 5Ma H,Zhou D,Liu C.Recommender systems with social regularization.Proceedings of the 4th ACM International Conference on Web Search and Data Mining,New York,USA,2011:287-296. 被引量:1
  • 6Zhang D,Li N,Zhou Z H,et al.IBAT:detecting anomalous taxi trajectories from GPS traces.Proceedings of the 13th International Conference on Ubiquitous Computing,New York,USA,2011:99-108. 被引量:1
  • 7Zheng N,Li Q.A recommender system based on tag and time information for social tagging systems.Expert Systems with Applications,2011,38(4):4575-4587. 被引量:1
  • 8Zha o K,Wang X,Yu M,et al.User recommendation in reciprocal and bipartite social networks——a case study of online dating.IEEE Intelligent Systems,2013,17(3):29-30. 被引量:1
  • 9Liu B,Xiong H,Liu B,et al.Point-of-interest recommendation in location based social networks with topic and location awareness.Proceedings of SIAM International Conference on Data Mining,Austin,Texas,USA,2013:396-404. 被引量:1
  • 10冯少荣,肖文俊.基于密度的DBSCAN聚类算法的研究及应用[J].计算机工程与应用,2007,43(20):216-221. 被引量:34

二级参考文献121

  • 1姜华平,许洪国.基于数理统计原理的交通事故多发点识别[J].济南交通高等专科学校学报,2001,9(3):15-17. 被引量:6
  • 2Ester M,Kriegel H P,Sander J,et al.A density-based algorithm for discovering clusters in large spatial databases with noise[C]//Proceeding the 2nd International Conference on Knowledge Discovery and Data Mining(KDD),Portland,1996:226-231. 被引量:1
  • 3Ester M,Kriegel H P,Sander J,et al.Clustering for mining in large spatial databases[J].KI,1998,12(1):18-24. 被引量:1
  • 4Sander J,Ester M,Kriegel H P,et al.Density-based clustering in spatial databases:the algorithm GDBSCAN and its applications[J].Data Mining and Knowledge Discovery,Kluwer Academic Publishers,1998,2(2). 被引量:1
  • 5Hinneburg A,Keim D A.Clustering techniques for large data sets:from the past to the future[C]//Tutorial,Proc Int Conf on Knowledge Discovery in Databases(KDD'99),San Diego,CA,1999. 被引量:1
  • 6Introduction to data mining and knowledge discovery[M].3rd ed.Two Crows Corporation,ISBN:1-892095-02-5,1999:1-36. 被引量:1
  • 7Jain A K,Murty M N,Flynn P J.Data clustering:a review[J].ACM Computing Surveys,1999,31 (3):264-323. 被引量:1
  • 8Braunmüller B,Ester M,Kriegel H P.Similarity queries:a basic DBMS operation for mining in metric databases[J].IEEE Transactions on Knowledge and Data Engineering,2000. 被引量:1
  • 9Ertoz L,Steinbach M,Kumar V.Finding clusters of different sizes,shapes,and densities in noisy,high dimensional data,Technical Report[R],2002 被引量:1
  • 10Berkhin P.Survey of clustering data mining techniques[J].Accrne Software,2002. 被引量:1

共引文献43

同被引文献51

引证文献7

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部