期刊文献+

基于大数据的海上目标隐性关联规则挖掘方法 被引量:1

Mining method of implicit association rules for marine targets based on big data
下载PDF
导出
摘要 利用基于Hadoop生态的大数据平台,汇聚情报数据,通过对海上目标情报数据进行深度挖掘和关联分析,提升目标活动属性与关系信息挖掘能力,发现海上目标的活动路线、基本属性、事件类型、时间、区域等因素之间的多层隐性关联规则,从而实现对海上目标活动规律的精准分析、研判预测等功能。 This paper uses a Hadoop-based big data platform to gather intelligence data.Then,through in-depth mining and correlation analysis of maritime target intelligence data,the ability to mine target activity attributes and relationship information is improved.This paper studies the multi-layer implicit association rules among maritime target attributes,including activity routes,basic attributes,event types,time,areas,etc.Finally,the functions of precise analysis,judgment and prediction of the activity rules of maritime targets will be realized.
作者 郭鹏飞 李海霞 常海艳 白柯鑫 张煜 Guo Pengfei;Li Haixia;Chang Haiyan;Bai Kexin;Zhang Yu(North Automatic Control Technology Institute,Taiyuan 030006,China)
出处 《网络安全与数据治理》 2023年第S01期71-77,共7页 CYBER SECURITY AND DATA GOVERNANCE
关键词 数据平台 关联规则 HADOOP big data platform association rules Hadoop
  • 相关文献

参考文献12

二级参考文献113

  • 1张达夫,张昕明.基于时空特性的GPS轨迹数据压缩算法[J].交通信息与安全,2013,31(3):6-9. 被引量:15
  • 2姜华平,许洪国.基于数理统计原理的交通事故多发点识别[J].济南交通高等专科学校学报,2001,9(3):15-17. 被引量:6
  • 3胡江强,杨盐生,李铁山.恒向线航向和航程的精确计算[J].大连海事大学学报,2005,31(2):11-14. 被引量:11
  • 4Ester M,Kriegel H P,Sander J,et al.A density-based algorithm for discovering clusters in large spatial databases with noise[C]//Proceeding the 2nd International Conference on Knowledge Discovery and Data Mining(KDD),Portland,1996:226-231. 被引量:1
  • 5Ester M,Kriegel H P,Sander J,et al.Clustering for mining in large spatial databases[J].KI,1998,12(1):18-24. 被引量:1
  • 6Sander J,Ester M,Kriegel H P,et al.Density-based clustering in spatial databases:the algorithm GDBSCAN and its applications[J].Data Mining and Knowledge Discovery,Kluwer Academic Publishers,1998,2(2). 被引量:1
  • 7Hinneburg A,Keim D A.Clustering techniques for large data sets:from the past to the future[C]//Tutorial,Proc Int Conf on Knowledge Discovery in Databases(KDD'99),San Diego,CA,1999. 被引量:1
  • 8Introduction to data mining and knowledge discovery[M].3rd ed.Two Crows Corporation,ISBN:1-892095-02-5,1999:1-36. 被引量:1
  • 9Jain A K,Murty M N,Flynn P J.Data clustering:a review[J].ACM Computing Surveys,1999,31 (3):264-323. 被引量:1
  • 10Braunmüller B,Ester M,Kriegel H P.Similarity queries:a basic DBMS operation for mining in metric databases[J].IEEE Transactions on Knowledge and Data Engineering,2000. 被引量:1

共引文献59

同被引文献17

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部