期刊文献+

正则Dirichlet子空间与Mosco收敛性 被引量:1

Regular Dirichlet Subspaces and Mosco Convergence
下载PDF
导出
摘要 讨论了一维不可约强局部Dirichlet,型的正则子空间的Mosco收敛性.如果正则子空间的特征集是收敛的,那么相应的正则子空间在Mosco意义下也是收敛的.最后,用一些具体的例子说明了Mosco收敛不能保持Dirichlet型整体特性的稳定. In this paper, the authors explore the Mosco convergence on regular subspaces of one-dimensional irreducible and strongly local Dirichlet forms. It is found that if the char- acteristic sets of regular subspaces are convergent, then their associated regular subspaces are also convergent in the sense of Mosco. Finally, some examples illustrate that the Mosco convergence does not preserve any global properties of the Dirichlet forms.
作者 宋秀翠 李利平 SONG Xiucui LI Liping(School of Mathematical Sciences, Fhdan University, Shanghai 200433, China Corresponding author. School of Mathematical Sciences, Fudan University,Shanghai 200433, China.)
出处 《数学年刊(A辑)》 CSCD 北大核心 2016年第1期1-14,共14页 Chinese Annals of Mathematics
关键词 DIRICHLET型 正则子空间 Mosco收敛 极小扩散过程 Dirichlet forms, Regular subspaces, Mosco convergence, Minimaldiffusion
  • 相关文献

参考文献1

二级参考文献1

共引文献1

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部