摘要
Roughly speaking a regular Dirichlet subspace of a Dirichlet form is a subspace which is also a regular Dirichlet form on the same state space. In particular, the domain of regular Dirichlet subspace is a closed subspace of the Hilbert space induced by the domain and a-inner product of original Dirichlet form. We investigate the orthogonal complement of regular Dirichlet subspace for one-dimensional Brownian motion in this paper. Our main results indicate that this orthogonal complement has a very close connection with the a-harmonic equation under Neumann type condition.
Roughly speaking a regular Dirichlet subspace of a Dirichlet form is a subspace which is also a regular Dirichlet form on the same state space. In particular, the domain of regular Dirichlet subspace is a closed subspace of the Hilbert space induced by the domain and α-inner product of original Dirichlet form. We investigate the orthogonal complement of regular Dirichlet subspace for one-dimensional Brownian motion in this paper. Our main results indicate that this orthogonal complement has a very close connection with theα-harmonic equation under Neumann type condition.