期刊文献+

基于高斯眼白模型的疲劳驾驶检测 被引量:16

Fatigue driving detection based on sclera Gaussian model
原文传递
导出
摘要 目的为解决疲劳驾驶检测中人眼状态识别的难点,提出一种基于眼白分割的疲劳检测方法。方法首先对获取图像进行人脸检测,利用眼白在Cb-Cr上良好的聚类性,基于YCb Cr颜色空间建立高斯眼白分割模型;然后在人脸区域图像内做眼白分割,计算眼白面积;最后将眼白面积作为人眼开度指标,结合PERCLOS(percentage of eyelid closure over the pupil over time)判定人的疲劳状态。结果选取10个短视频进行采帧分析,实验结果表明,高斯眼白分割模型能有效分离眼白,并识别人眼开合状态,准确率可达96.77%。结论在良好光线条件下,本文方法能取得不错的分割效果;本文所提出的以眼白面积作为判定人眼开度的指标,能准确地判定人的疲劳状态。实验结果证明了该方法的有效性,值得今后做更深入的研究。 Objective Considering that achieving non-contact and high precision in fatigue driving detection is difficult, the method based on computer vision arises as a possible solution. The key point to achieve fatigue driving detection is to recog- nize the open and closed state of driver' s eyes and estimate if the driver is fatigued and sleepy. This paper proposes a new fatigue driving detection method based on sclera segmentation to solve the problem of recognizing the open and closed state of driver' s eyes in fatigue driving. Method The face is tested from the acquired picture using a face detection method based on Adaboost raised by Viola and Jones. Then, a Gauss sclera model based on YCbCr color space is built for the next step because of the good clustering performance of sclera in Cb-Cr color space. The sclera is detected in the face region using this model and the area of the sclera is calculated. The sclera area is considered the eye opening index and the fatigue state is determined along with the PERCLOS criterion. Result Experimental results for 10 short testing videos show that the pro- posed algorithm can select the sclera part and recognize the open and closed state of human eyes effectively. The accuracy rate can reach up to 96. 77%. Conclusion The proposed method can achieve satisfactory segmentation effect under good lighting condition. Using the sclera area as the eye opening index, the proposed method can also judge the state of driver' s fatigue accurately. The new approach is effective and must be further studied.
作者 旷文腾 毛宽诚 黄家才 李海彬 Kuang Wenteng Mao Kuancheng Huang Jiacai Li Haibin(Department of Automation, Nanjing Institute of Technology, Nanjing 211167, China)
出处 《中国图象图形学报》 CSCD 北大核心 2016年第11期1515-1522,共8页 Journal of Image and Graphics
基金 国家自然科学基金项目(61104085) 江苏省自然科学基金项目(BK20151463) 江苏省大学生科技创新项目(201511276014Z)~~
关键词 疲劳驾驶 人脸检测 眼白特征 YCBCR 高斯模 PERCLOS(percentage of EYELID elostlre OVER the PUPIL OVER time) fatigue driving face detection sclera characteristics YCbCr Gauss model percentage of eyelid closureover the pupil over time (PERCLOS)
  • 相关文献

参考文献1

二级参考文献2

共引文献8

同被引文献90

引证文献16

二级引证文献113

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部