期刊文献+

驾驶人眼睛局部区域定位算法 被引量:9

Driver's eye region location algorithm
原文传递
导出
摘要 基于机器视觉的驾驶人疲劳检测系统,通过对驾驶人眼睛动作的分析实现对驾驶人疲劳状态的估计。眼睛区域的准确定位是保证疲劳检测精度的前提条件。然而,实际行车过程中,驾驶人头部姿态随机、快速变化会造成眼睛区域定位精度的严重下降。该文在基于主动形状模型(ASM)算法实现驾驶人眼睛区域粗定位的基础上,针对ASM模型在实际检测过程中的姿态适应性较低与定位精度不高的问题,提出局部ASM模型来增强ASM算法的姿态适应性;进一步引入平均合成精确滤波器(ASEF)算法与ASM算法相结合的思路提高对眼睛区域的定位精度;同时,提出单、双眼相结合的ASEF算法来提高眼睛虹膜中心定位的鲁棒性。实验结果表明:该算法对于驾驶人头部姿态变化具有较强的适应性,能够实现眼睛区域的准确定位。 Driver drowsiness estimates can be realized by analyses of the drivers'eye movements based on a machine vision system.However,the system requires accurate eye region recognition in the driver's facial image.Random,rapid changes of the head posture complicate locating the eye region in real driving scenarios.The active shape model(ASM)can be used to coarsely locate the eye region.This study uses a local ASM model to enhance the head posture adaptability of the ASM algorithm.Then,the average of synthetic exact filters(ASEF)algorithm and the ASM are combined to improve the eye region location precision.A single eye ASEF and a double eyes ASEF are integrated to more robustly identify the iris center location.Tests show that the algorithm has strong head posture adaptability and can robustly and accurately identify the eye region location.
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2014年第6期756-762,共7页 Journal of Tsinghua University(Science and Technology)
基金 交通运输部信息化科技项目(2012-364-835-110)
关键词 疲劳驾驶 机器视觉 眼睛定位 driver drowsiness machine vision eye location
  • 相关文献

参考文献3

二级参考文献18

  • 1牟勇飚,钟诚文.基于安全驾驶的元胞自动机交通流模型[J].物理学报,2005,54(12):5597-5601. 被引量:33
  • 2Yang J H, Mao Z H, Tijerina L, et al. Detection of Driver Fatigue Caused by Sleep Deprivation [ J ]. IEEE Transactions on Systems,Man, and Cybernetics, Part A : Systems and Humans, 2009,39 ( 4 ) : 694 -705. 被引量:1
  • 3Culp J, Gindy M El, Haque A. Driver Alertness Monitoring Tech- niques: a Literature Review [ J ]. International Journal of Heavy Vehicle Systems,2008,15 ( 2 -4 ) :255-271. 被引量:1
  • 4Yuille A, Hallinan P, Cohen D. Feature Extraction from Faces U- sing Deformable Templates [ J ]. International Journal of Computer Vision, 1992,8 (2) :99-111. 被引量:1
  • 5Sirohey S, Rosenfeld A, Duric Z. A Method of Detecting and Tracking Irises and Eyelids in Video [ J ]. Pattern Recognition, 2002.35(6) :1389-1401. 被引量:1
  • 6Hallinan P W. Recognizing Human Eyes[ C]. SPIE Proceedings, Vol. 1570 : Geometric Methods in Computer Vision , San Diego, CA, USA,1991:212-226. 被引量:1
  • 7Hillman P M, Hannah J M, Grant P M. Global Fitting of a Facial Model to FacialFeatures for Model-based Video Coding[C]. Pro- ceedings of the 3rd International Symposium on Image and Signal Processing and Analysis, Rome, Italy,2003:359-364,. 被引量:1
  • 8Gu H S, Ji Q, Zhu Z W. Active Facial Tracking for Fatigue De- tection [ C ]. Proceedings of the Sixth IEEE Workshop on Applica- tions of Computer Vision ( WACV'02 ), Orlando, Florida, 2002 : 173-142. 被引量:1
  • 9Viola P, Jones M. Rapid Object Detection Using a Boosted Cas- cade of Simple Features[ C]. Proceedings of the 2001 IEEE Com- puter Society Conference on Computer Vision and Pattena Recog- nition, CVPR2001, Kauai, HI, USA,2001,1:1-511-1-518. 被引量:1
  • 10Cootes T F, Taylor C J, Cooper D H, et al. Active Shape Models - Their Training and Application[ J]. Computer Vision and Im- age Understanding,1995,61 ( 1 ) :38-59. 被引量:1

共引文献5

同被引文献157

引证文献9

二级引证文献72

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部