期刊文献+

基于面部行为分析的驾驶员疲劳检测方法 被引量:33

Driver Fatigue Detection Method Based on Facial Behavior Analysis
下载PDF
导出
摘要 眼睛和嘴部状态检测是疲劳检测方法的重要步骤,但眼镜遮挡及光照变化使得眼睛状态识别效果不佳。为此,提出一种新的驾驶员疲劳检测方法。使用红外采集设备对驾驶员面部图像进行采集,通过结合AdaBoost与核相关滤波器算法进行人脸检测及跟踪。采用级联回归方法定位特征点,提取眼睛和嘴部区域。运用卷积神经网络进行眼睛和嘴部状态识别,在此基础上计算多个疲劳参数进行疲劳检测。实验结果表明,该方法在多种情况下均能准确地检测眼睛和嘴部状态,可有效地进行疲劳检测。 The state detection method of eye and mouth is the key issue for fatigue detection,but it is affected by changing of illumination and wearing glasses. To solve above problems, a fatigue detection method based on facial behavior analysis is proposed. It designs an infrared video acquisition system for driver. The driver' s face is detected based on AdaBoost and the Kernelized Correlation Filter(KCF) tracking algorithm. The feature points are determined by the method of cascade regression, and the eye and mouth regions are obtained. Convolution Neural Network(CNN) is utilized to detect the state of eye and mouth. On this basis, the fatigue parameters are calculated for fatigue detection. Experimental results show that the method can detect the state of eye and mouth accurately and detect fatigue more effectively in many circumstances.
出处 《计算机工程》 CAS CSCD 北大核心 2018年第1期274-279,共6页 Computer Engineering
基金 国家自然科学基金(61601325) 天津市科技支撑计划重点项目(14ZCZDGX00033) 天津市科技特派员项目(15JCTPJC56300)
关键词 疲劳检测 人脸检测 特征点检测 状态识别 核相关滤波器 卷积神经网络 fatigue detection face detection feature point detection state recognition Kernelized Correlation Filter(KCF) Convolution Neural Network (CNN)
  • 相关文献

参考文献9

二级参考文献71

  • 1王文宁,李慧娟,师磊.一种基于颜色和形状特征的人脸检测方法[J].计算机系统应用,2008,17(7):58-61. 被引量:5
  • 2刘正光,刘洁.基于肤色分割的人脸检测算法研究[J].计算机工程,2007,33(4):179-181. 被引量:7
  • 3LIEVIN M, LUTHON F. Nonlinear color space and spati- otemporal MRF for hierarchical segmentation of face fea- tures in vide()[ J 1- IEEE Trans. Image Processing, 2004,13(1) : 63-71. 被引量:1
  • 4HSU R L, ABDEL-MOTI'ALEB M, JAIN A K. Face de- tection in color images[ J]. IEEE Trans. Pattern Analysis and Machine Intelligence, 2002, 24 (5) : 696-706. 被引量:1
  • 5LIU CH J, YANG J. ICA color space for pattern recogni- tion[ J ]. IEEE Trans. Neural Networks, 2009,20 (2) : 248-257. 被引量:1
  • 6CHOI J Y, ROY M, PLATANIOTIS K N. Boosting color feature selection for color face recognition [ J ]. IEEE Trans. Image Processing, 2011,20 ( 5 ) : 1425-1434. 被引量:1
  • 7PHUNG S L, BOUZERDOUM A, CHAI D. Skin seg- mentation using color pixel classification: Analysis and comparison[J]. IEEE Trans. Pattern Analysis and Ma- chine Intelligence, 2005,27( 1 ) :148-154. 被引量:1
  • 8YANG J, LU W, WAIBEL A. Skin-color modeling and adaptation [ C ]. Lecture Notes in Computer Science, 1997,1352 : 687-694. 被引量:1
  • 9PHILLIPS P J, MOON H, RIZVI S A, et al. The FERET evaluation methodology for face recognition algorithms [J]. IEEE Trans. Pattern Analysis and Machine Intelli- zence, 2000. 22 : 1090-1104. 被引量:1
  • 10HUANG G B, RAMESH M, BERG T, et al. Labeled faces in the wild: A database for studying face recogni- tion in unconstrained environments [ R ]. Amherst : Uni- versity of Massachusetts, 2007: 7-49. 被引量:1

共引文献78

同被引文献155

引证文献33

二级引证文献128

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部