期刊文献+

求解非线性二阶锥规划的Carroll函数方法的收敛性分析(英文)

Convergence Analysis of Carroll Function Method for Nonlinear SOC Programs
下载PDF
导出
摘要 本文构造了求解非线性规划问题的基于Carroll函数的非线性拉格朗日方法.在严格互补条件、约束非退化条件和二阶充分条件成立的前提下,本文证明了Carroll非线性拉格朗日方法的收敛性.在上述条件下,当罚参数小于某常数并且最优解的误差界和罚参数成某比例时,分析该算法的局部收敛速度.最后,给出一些初步的数值实验结果. This paper focuses on the study of the rate of convergence for the nonlinear Lagrangian method based on Carroll function for nonconvex nonlinear second-order cone programming. A set of conditions, including the componentwise strict complementarity condition, the constraint nondegeneracy condition and the second order sufficient condition, are used to guarantee the convergence of Carroll function method. The convergence theorem shows that under above conditions the dual algorithm based on Carroll function is locally convergent when the penalty parameter is less than a threshold and the error bound of solution is proportional to the penalty parameter. Moreover, numerical results are reported to show the efficiency of the proposed method.
作者 顾剑 肖现涛
出处 《应用数学》 CSCD 北大核心 2016年第4期855-870,共16页 Mathematica Applicata
基金 Supported by the Ph.D.Programs Foundation of the Ministry of Education of China(20110041120039)
关键词 Carroll函数 非线性二阶锥规划 非线性拉格朗日方法 收敛性分析 Carroll function Nonlinear Lagrangian method Nonlinear second-order cone programming
  • 相关文献

参考文献16

  • 1Bertsekas D P. Constrained Optimization and Lagrange Multiplier Methods [M]. New York: Academic Press, 1982. 被引量:1
  • 2Bonnans J F, Ramlrez C H. Perturbation analysis of second order cone programming problems [J]. Mathematical Programming, 2005, 104: 205-227. 被引量:1
  • 3Bonnans J F, Shapiro A. Perturbation Analysis of Optimization Problems [M]. New York: Springer- Verlag, 2000. 被引量:1
  • 4Debreu G. Definite and semidefinite quadratic forms [J]. Econometrica, 1952, 20: 295-300. 被引量:1
  • 5Faraut J, Kornyi A. Analysis on Symmetric Cones [M]. Oxford: Clarendon Press, 1994. 被引量:1
  • 6Fukushima M, LUO Z Q, Tseng P. Smoothing functions for second-order-cone complementarity prob- lems [J]. SIAM J. Optim., 2001, 12: 436-460. 被引量:1
  • 7Hestenes M R. Multiplier and gradient method [J]. Journal on Optimization Theory and Applications, 1969, 4: 303-320. 被引量:1
  • 8Kato H, Fukushima M. An SQP-type algorithm for nonlinear second-order cone programs [J]. Opti- mization Letters, 2007, 1: 129-144. 被引量:1
  • 9LIU Y J, ZHANG L W. Convergence analysis of the augmented Lagrangian method for nonlinear second-order cone optimization problems [J]. Nonlinear Analysis, 2007, 67: 1359-1373. 被引量:1
  • 10LIU Y J, ZHANG L W. On the approximate augmented Lagrangian for nonlinear second order cone programming [J]. Nonlinear Analysis: Theory, Methods & Applications, 2008, 68: 1210-1225. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部