期刊文献+

一类非线性二阶锥规划的非光滑牛顿法

A NON-SMOOTHING NEWTON METHOD FOR NONLINEAR SECOND-ORDER CONE PROGRAMMING
下载PDF
导出
摘要 本文研究了非线性二阶锥规划问题.利用投影映射将非线性二阶锥规划问题的KKT最优性条件转化成非光滑方程组,获得了一个修正的中心路径非光滑牛顿法.在适当的条件下保证方程组的B-次微分在任意点都可逆,并且证明算法具有全局收敛性. In this paper, the second order cone programming is studied. By using the project mapping, the corresponding optimal conditions are transformed into a nonsmoothing system. Then, based on the center path idea, a modified nonsmoothing Newton method is proposed. Under some suitable conditions, the B-subdifferential of the system is reversible at any point, and the algorithm is proved to be global convergent.
出处 《数学杂志》 CSCD 北大核心 2014年第3期589-596,共8页 Journal of Mathematics
基金 国家自然科学基金(No.11361018) 广西杰出青年基金(2012GXNSFFA060003)
关键词 非线性二阶锥规划 B-次微分 非光滑牛顿法 全局收敛性 nonlinear second-order cone programming B-subdifferential non-smoothing Newton method global convergence.
  • 相关文献

参考文献2

二级参考文献13

  • 1Alizadeh F and Goldfarb D. Second-order cone programming. Mathematical Programming, 2003, 95(1): 3- 51. 被引量:1
  • 2Qi Liqun and Sun Jie. A nonsmooth version of Newton's method. Mathematical Programming, 1993, 58(3): 353-367. 被引量:1
  • 3Huang Zhenghai, Qi Liqun and Sun Defeng. Sub-quadratic convergence of a smoothing Newton algorithm for the P0- and monotone LCP. Mathematical Programming, 2004, 99(3): 423-441. 被引量:1
  • 4Burke Jim and Xu Song. A non-interior predictor-corrector path following algorithm for the mono- tone linear complementarity problem. Mathematical Programming, 2000, 87: 113-130. 被引量:1
  • 5Huang Zhenghai and Han Jiye. Non-interior continuation method for solving the monotone semidef- inite complementarity problem. Applied Mathematics and Optimization, 2003, 47(3): !95-211. 被引量:1
  • 6Chen X D, Sun D and Sun J. Complementarity functions and numerical experiments on smoothing Newton methods for second-order-cone complementarity problems. Computational Optimization and Applications, 2003, 25(1-3): 39-56. 被引量:1
  • 7Fukushima M, Luo Z Q and Tseng P. Smoothing functions for second-order-cone complementarity problems. SIAM Journal on Optimization, 2001, 12(2): 436-460. 被引量:1
  • 8Faraut J and Koranyi A. Analysis on Symmetric Cones. New York: Oxford University Press, 1994. 被引量:1
  • 9Sun D and Sun J. Strong semismoothness of Fischer -Burmeister SDC and SOC complementarity functions. Mathematical Programming, 2005, 103(3): 575-581. 被引量:1
  • 10Clarke F. Optimization and Nonsmooth Analysis. New York: John Wiley and Sons, 1983. 被引量:1

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部