摘要
在Pecora和Carroll提出的驱动 响应同步方案的基础上 ,引入间歇驱动的概念 ,仅间断地驱动响应系统 ,以实现驱动与响应系统混沌同步 .通过分析和数值研究表明该方法具有更大的适用范围 ,增加了驱动变量的选择自由度 ,且工作鲁棒 .
In this paper, we study the synchronization of chaotic systems using occasional driving technique-a modified Pecora-Carroll method. Unlike Pecora-Carroll method, to synchronize the chaotic driving and response systems, the driving signal only occasionally imposes to the response system, and we update the response variables with a time-interval of the imposing action period. Numerical analysis indicates that the occasional driving method is applicable to various dynamical systems and adds the degrees of freedom in selecting the driving variables. Furthermore, the method possesses robustness while it works.
出处
《物理学报》
SCIE
EI
CAS
CSCD
北大核心
2001年第1期21-25,共5页
Acta Physica Sinica
基金
国家自然科学基金!(批准号 :6 98710 16 )资助的课题&&
关键词
同步
间歇驱动
渐近稳定
条件李雅谱诺夫指数
混沌
synchronization
occasional drive
asymptotically stability
condition lyapunov exponents