期刊文献+

针对单样本人脸的三维部分人脸识别 被引量:6

3D Face Recognition with Partial Facial Data and Single Sample
下载PDF
导出
摘要 针对三维人脸识别中人脸数据部分缺失、遮挡以及损坏等情况,以及由训练样本缺乏引起的单训练样本问题,定义基于局部关键点的多三角形统计特征,该特征不仅能够在人脸数据部分可见的情况下保证鲁棒性,在人脸表情和姿态变化时也能准确描述人脸。针对单训练样本问题,提出一种两阶段加权协同表示方法。将提取的人脸局部特征作为先验知识,计算基于类的概率估计,并将该概率估计作为第二阶段分类中的局部约束,进而提高识别性能。实验结果表明,该方法可有效提高单样本部分人脸的识别率。 3D face recognition with the availability of only partial data and single training sample is a highly challenging task. In order to address challenge ,this paper defines the statistical feature of multiple triangles based on local key points ,which is robust to partial facial data,large facial expressions and pose variations. Aiming at the single sample problem,this paper proposes a two-phase weighted Collaborative Representation(CR) classification method. A class-based probability estimation is calculated based on the extracted local descriptors as prior knowledge, and this probability estimation is used to be local constraint in the second stage of classification to enhance the discriminating ability. Experimental results show that the proposed method can improve the recognition rate in the case of the partial facial data and single training sample.
出处 《计算机工程》 CAS CSCD 北大核心 2016年第9期144-150,共7页 Computer Engineering
基金 国家自然科学基金资助项目(61403265 61471371) 四川省科技计划基金资助项目(2015SZ0226)
关键词 三维人脸识别 三维表示 稀疏表示 部分面部数据 单样本 3D face recognition 3D representation Sparse Representation(SR) partial facial data single sample
  • 相关文献

参考文献26

  • 1王跃明,潘纲,吴朝晖.三维人脸识别研究综述[J].计算机辅助设计与图形学学报,2008,20(7):819-829. 被引量:64
  • 2晓莉,达飞鹏.基于排除算法的快速三维人脸识别方法[J].自动化学报,2010,36(1):153-158. 被引量:32
  • 3常俊彦,达飞鹏,蔡亮.基于特征融合的三维人脸识别[J].东南大学学报(自然科学版),2011,41(1):47-51. 被引量:9
  • 4Savran A, Alyuz N, Dibeklio~lu H, et al. Bosphorus Database for 3D Face AnalysisIM~//Schouten B,Juul N C, Drygajlo A, et al. Biometrics and Identity Management. Berlin, Germany :Springer ,2008:47-56. 被引量:1
  • 5Colombo A, Cusano C, Schettini R. Detection and Restoration of Occlusions for 3D Face Recognition~ C 1// Proceedings of 2006 IEEE International Conference on Multimedia and Expo. Washington D. C.,USA:IEEE Press, 2006 : 1541-1544. 被引量:1
  • 6Alyuz N, Gokberk B, Akarun L. 3-D Face Recognition Under Occlusion Using Masked Projection I J ~- IEEE Transactions on Information Forensics and Security, 2013,8(5) :789-802. 被引量:1
  • 7Li B Y L,Mian A S,Liu Wanquan,et al. Using Kinect for Face Recognition Under Varying Poses, Expressions, Illumination and Disguise I C ~//Proceedings of 2013 IEEE Workshop on Applicatior~s of Computer Vision. Washington D. C., USA : IEEE Press ,2013 : 186-I 92. 被引量:1
  • 8Zhao Xi, Dellandrea E, Chen Liming, et al. Accurate Landmarking of Three-dimensional Facial Data in the Presence of Facial Expressions and Occlusions Using a Three-dimensional Statistical Facial Feature Model I J 3 ~ IEEE Transactions on Systems, Man, and Cybernetics, Part B :Cybernetics ,2011,41 (5) : 1417-1428. 被引量:1
  • 9Li Huibin, Huang Di ,Morvan J,et al. Towards 3D Face Re- cognition in the Real:A Registration-free Approach Using Fine-grained Matching of 3D Keypoint Descriptors I J 1. International Journal of Computer Vision, 2014, 113 (2) : 128-142. 被引量:1
  • 10Wright J, Yang A,Ganesh A, et al. Robust Face Recogni- tion via Sparse Representation I J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009,31 ( 2 ) : 210-227,. 被引量:1

二级参考文献105

  • 1柳杨.三维人脸识别算法综述[J].系统仿真学报,2006,18(z1):400-403. 被引量:7
  • 2Zhong C, Sun Z N, Tan T N, He Z F. Robust 3D face recognition in uncontrolled environments. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Anchorage, USA: IEEE, 2008. 1-8. 被引量:1
  • 3Bowyer K W, Chang K, Flynn P. A survey of approaches and challenges in 3D and multi-modal 3D + 2D face recognition. Computer Vision and Image Understanding, 2006, 101(1): 1-15. 被引量:1
  • 4Lu X G, Jain A K. Deformation modeling for robust 3D face matching. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(8): 1346-1356. 被引量:1
  • 5Chang K I, Bowyer K W, Flynn P J. Multiple nose region matching for 3D face recognition under varying facial expression. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(10): 1695-1700. 被引量:1
  • 6Besl P J, Mckay H D. A method for registration of 3-D shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(2): 239-256. 被引量:1
  • 7Mian A S, Bennamoun M, Owens R.An efficient multimodal 2D-3D hybrid approach to automatic face recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(11): 1927-1943. 被引量:1
  • 8Beumier C, Acheroy M. Automatic 3D face authentication. Image and Vision Computing, 2000, 18(4): 315-321. 被引量:1
  • 9Dorai C, Jain A K. COSMOS A representation scheme for 3D free-form objects. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(10): 1115-1130. 被引量:1
  • 10Pan G, Wang Y M, Qi Y P, Wu Z H. Finding symmetry plane of 3D face shape. In: Proceedings of the 18th International Conference on Pattern Recognition. Piscataway, USA: IEEE, 2006. 1143-1146. 被引量:1

共引文献105

同被引文献49

引证文献6

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部