期刊文献+

基于聚类建模的三维人脸识别技术研究 被引量:5

Research of 3D Face Recognition Technology Based on the Cluster Modeling
下载PDF
导出
摘要 由于信息采集困难、环境条件约束、实现方式和手段不足等原因,三维人脸识别技术还很不成熟.为此提出将聚类技术应用到三维人脸建模过程中来提高建模的效果和效率.首先定义了三维人脸相似性,提出了圆锥曲线相似性定义方法.其次基于三维人脸聚类建模提出了人脸识别系统的新框架,设计了与新系统对应的识别策略.实验证明,基于聚类建模的人脸识别系统在进行人脸识别时所用的时间远远少于采用传统形变模型的方法所用的时间,而且对人脸样本的数量不敏感. Abstract: As the information collection difficulties, environmental conditions, lack of ways and means to achieve and so on, the realization of 3D face recognition is still immature. This paper applied cluster analysis techniques to 3D face modeling, 3D face similarity should come first in the framework, we reasonably defined similarity by Conic Affinity and designed a no- vel recognition strategy for our new framework of face recognition system based on cluster modeling, experiments show that clustering based modeling of face recognition system dur- ing the time when the spending is far lower than the traditional deformable model approach, but also to face the namber of samples is not sensitive.
出处 《陕西科技大学学报(自然科学版)》 2012年第2期77-81,共5页 Journal of Shaanxi University of Science & Technology
基金 河南省商丘市科技攻关计划项目(2010)
关键词 三维形变模型 人脸聚类 人脸建模 人脸识别 3D morphable model face cluster face modeling face recognition
  • 相关文献

参考文献5

二级参考文献73

  • 1柳杨.三维人脸识别算法综述[J].系统仿真学报,2006,18(z1):400-403. 被引量:7
  • 2J Yang, et al. Two - Dimensional PCA : A New Approach to Appearance- Based Face Representation and Recognition[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence ,2004 , 26 (1) :131 -137. 被引量:1
  • 3Y Nara, J Yang and Y Suematsu. Face Recognition Using Improved Principal Component Analysis [ C ], Proc. International Symposium on Micromechatronics and Human Science, 2003. 77 - 82. 被引量:1
  • 4H Yu and J Yang. A Direct LDA Algorithm for High - Dimensional Data with Application to Face Recognition[ J]. Pattern Recognition, 2001,34(10) : 2067 - 2070. 被引量:1
  • 5H Cevikalp, M Neamtu, M Wilkes and A Barkana. Discriminative Common Vectors for Face Recognition [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005 - 1,27( 1 ) : 4 - 13. 被引量:1
  • 6J Huang, P C uen, W S Chen and J H Lai. Component - Based Subspace Linear Discriminant Analysis Method for Face Recognition with One Training Sample [ J ]. Optical Engineering, 2005 - 3,44(5) :1 -10. 被引量:1
  • 7B Heisele, P Ho, J Wu and T Poggio. Face Recognition: Compo nent -Based Versus Global Approaches[ J]. Computer Vision and Image Understanding, 2003,91 : 6 - 21. 被引量:1
  • 8T Moriyama, T Kanade, J Xiao and J F Cohn. Meticulously Detailed Eye Region Model and Its Application to Analysis of Facial Images[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006 - 5,28 (5) :738 - 752. 被引量:1
  • 9K Jonsson, J Matas, J Kittler and Y Li. Learning Support Vectors for Face Verification and Recognition [ C ]. IEEE International Conference on Automatic Face and Gesture Recognition, 2000. 208 - 213. 被引量:1
  • 10T F Cootes, G J Edwards and C J Taylor. Active Appearance Models [ J ]. IEEE Transactions on Pattem Analysis and Machine Intelligence, 2001 -6,23(6) :681 -685. 被引量:1

共引文献69

同被引文献33

引证文献5

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部