期刊文献+

基于面部曲线特征融合的三维人脸识别 被引量:5

3D face recognition using compositional features from facial curves
下载PDF
导出
摘要 针对三维人脸识别,提出了一种基于面部等测地轮廓线并结合局部特征和整体特征的人脸识别方法.首先,在人脸中提取到鼻尖点等测地距离的点组成等测地轮廓线来表征人脸面部曲面;然后,根据重采样后轮廓线上点的邻域信息提取局部特征,根据轮廓线的整体形状信息提取人脸整体特征;最后,分别利用比较局部特征和整体特征,将比较结果在决策级融合,给出最终识别结果.所提算法在FRGC(face recognition grand challenge)v2.0数据库上进行测试,测试结果表明,特征融合后的识别性能优于单一特征的识别率,且具有较好的表情鲁棒性. A 3D face recognition method combining local and global geometric features which are extracted from the iso-geodesic curves is proposed.First,a set of facial curves with different geodesic distances from the nose tip are extracted to represent a facial surface.Then,for each point in the re-sampled facial curves,local feature which is invariant to pose is calculated from its local neighborhood and the local feature represents the geometric information of the local neighborhood.Next,the shape information of the facial curves is computed which constitute the global feature.Finally,local feature and global feature are compared respectively,and the final result is the weighted sum of them.The method is tested on the FRGC(face recognition grand challenge) v2.0 data set,and the experimental results show that recognition performance using compositional features is superior to that using single feature.Furthermore,it is also robust to expression.
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第4期618-622,共5页 Journal of Southeast University:Natural Science Edition
基金 国家自然科学基金资助项目(51175081 61107001) 江苏省自然科学基金资助项目(BK2010058)
关键词 三维人脸识别 等测地轮廓线 特征融合 主成分分析 3D face recognition iso-geodesic curves feature fusion principal component analysis
  • 相关文献

参考文献11

  • 1晓莉,达飞鹏.基于排除算法的快速三维人脸识别方法[J].自动化学报,2010,36(1):153-158. 被引量:32
  • 2Bowyer K W, Chang K, Flynn P J. A survey of ap- proaches and challenges in 3D and multi-modal 3D + 2D face recognition [ J ]. Computer Vision and Image Un- derstanding, 2006, 101 ( 1 ) : l - 15. 被引量:1
  • 3Srivastava A, Liu Xiuwen, Hesher C. Face recognition using optimal linear components of range images [ J ]. Image and Vision Computing, 2006, 24( 3 ) : 291 -299. 被引量:1
  • 4Llonch R S, Kokiopoulou E, Tosic I, et al. 3D face recognition with sparse spherical representations [J ]. Pattern Recognition, 2010, 43(3 ) : 824 - 834. 被引量:1
  • 5ter Haar F B, Veltkamp R C. A 3D face matching framework for facial curves [ J ]. Graphical Models, 2009, 71(2): 77-91. 被引量:1
  • 6Berretti S, del Bimbo A, Pala P. 3D face recognition u- sing isogeodesic stripes [J]. IEEE Transactions on Pat- tern Analysis and Machine Intelligence, 2010, 32(12) :2162 -2177. 被引量:1
  • 7Dorai C, Jain A K. COSMOS-A representation scheme for 3D free-form objects [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19 (10): 1115-1130. 被引量:1
  • 8Zhang L Y, Razdan A, Farin G, et al. 3D face authen- tication and recognition based on bilateral symmetry analysis [ J]. Visual Computer, 2006, 22( 1 ) : 43 -55. 被引量:1
  • 9Bronstein A M, Bronstein M M, Kimmel R. Three-di- mensional face recognition [ J]. International Journal of Computer Vision, 2005, 64 ( 1 ) : 5 - 30. 被引量:1
  • 10Dijkstra E W. A note on two problems in connection with graphs [ J ]. Numerische Mathematic, 1959, 1 (3) : 269 -271. 被引量:1

二级参考文献18

  • 1Zhong C, Sun Z N, Tan T N, He Z F. Robust 3D face recognition in uncontrolled environments. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Anchorage, USA: IEEE, 2008. 1-8. 被引量:1
  • 2Bowyer K W, Chang K, Flynn P. A survey of approaches and challenges in 3D and multi-modal 3D + 2D face recognition. Computer Vision and Image Understanding, 2006, 101(1): 1-15. 被引量:1
  • 3Lu X G, Jain A K. Deformation modeling for robust 3D face matching. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(8): 1346-1356. 被引量:1
  • 4Chang K I, Bowyer K W, Flynn P J. Multiple nose region matching for 3D face recognition under varying facial expression. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(10): 1695-1700. 被引量:1
  • 5Besl P J, Mckay H D. A method for registration of 3-D shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(2): 239-256. 被引量:1
  • 6Mian A S, Bennamoun M, Owens R.An efficient multimodal 2D-3D hybrid approach to automatic face recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(11): 1927-1943. 被引量:1
  • 7Beumier C, Acheroy M. Automatic 3D face authentication. Image and Vision Computing, 2000, 18(4): 315-321. 被引量:1
  • 8Dorai C, Jain A K. COSMOS A representation scheme for 3D free-form objects. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(10): 1115-1130. 被引量:1
  • 9Pan G, Wang Y M, Qi Y P, Wu Z H. Finding symmetry plane of 3D face shape. In: Proceedings of the 18th International Conference on Pattern Recognition. Piscataway, USA: IEEE, 2006. 1143-1146. 被引量:1
  • 10Baker S, Nayar S K. Pattern rejection. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Francisco, USA: IEEE, 1996. 544-549. 被引量:1

共引文献31

同被引文献55

  • 1A1-Osaimi F, Bennamoun M, Mian A. An expression deformation approach to non-rigid 3D face recognitionE J]. International Journal of Computer Vision, 2008, 81(8) :1346 - 1357. 被引量:1
  • 2Wang Yueming, Liu Jiangzhuang, Tang Xiaoou. Ro- bust 3D face recognition by local Shape difference boos- ting[J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(10) : 1858 - 1870. 被引量:1
  • 3Hesher C, Srivastava A, Erlebacher G. A novel tech- nique for face recognition using range imaging[ C ]// Proceedings of the Symposium on Signal Processing and Its Applications. Paris, France, 2003:201 -204. 被引量:1
  • 4Srivastava A, Liu X, Hesher C. Face recognition using optimal linear components of range images E J ]. Image and Vision Computing, 2006, 24(3) : 291 -299. 被引量:1
  • 5Dangman J. Complete discrete 2-D Gabor transforms by neural networks for image analysis and compression [J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1988, 36 ( 7 ) : 1169 - 1179. 被引量:1
  • 6Cook J A, Chandran V, Fookes C B. 3D face recogni- tion using log-Gabor templates [ C ]//British Machine Vision Conference. Edinborough, Scotland, 2006:1 - 10. 被引量:1
  • 7Xu Chenghua, Li Stan, Tan Tieniu, et al. Automatic 3D face recognition from depth and intensity Gabor fea- tures [ J ]. Pattern Recognition, 2009, 42 ( 9 ) : 1895 - 1905. 被引量:1
  • 8Dorai C, Jain A K. COSMOS-a representation scheme for 3D free-form objects[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19 (10) : 1115 -1130. 被引量:1
  • 9Fltemier T, Bowyer K, Flynn P. Using a multi-in- stance enrollment representation to improve 3d face recognition[ C ]//First IEEE Conference on Biomet- tics: Theory, Application, and System. Washington, DC, USA, 2007 : 1 - 6. 被引量:1
  • 10Zhong C,Sun Z N,Tan T N,et al.Robust 3 D face recognition in uncontrolled environments[C]// Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Washington DC:IEEE Computer Society,2008:1-8. 被引量:1

引证文献5

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部