期刊文献+

融合整体和局部信息的三维人脸识别 被引量:4

Fusion of global and local information for 3D face recognition
原文传递
导出
摘要 针对三维人脸识别中单一特征信息不足,采用一种基于整体信息和局部信息相融合的识别算法,以提高识别率。首先将预处理的三维点云用多层次B样条曲面拟合,获取精确的人脸曲面拟合函数,将控制点映射为深度图像,并根据人脸曲面函数和生理特征提取过鼻尖的中分轮廓线和水平轮廓线;其次对深度图像采用二维主元分析(2D-PCA)算法提取整体信息,对轮廓线采用改进的ICP算法匹配,作为局部信息;最后用加权求和法在决策级进行信息融合。采用CASIA3D人脸库完成识别测试,实验结果表明,本文算法明显优于单一特征信息下识别算法,且对姿态有较好的鲁棒性,同时不增加算法复杂度。 In terms of the scarcity of single feature information in 3D face recognition,a recognition algorithm based on the fusion of global and local information is proposed in this paper for improving the recognition accuracy.Firstly,we make a surface fitting on the preprocessed 3D cloudy points by using multilevel B-spline and acquire an accurate face surface fitting function.And then the control points of the function are mapped into the range image,and the central profile and the horizontal outline cross the nose top are extracted according to the surface function and physiological characteristics of the face.Secondly,2D principal component analysis(PCA) is applied on the range image for extracting global information,and the contours are matched using modified ICP algorithm as local information.Finally,the weighted sum method is used to achieve information fusion at decision stage.The recognition test is executed on CASIA 3D face database,and experimental results demonstrate that the method is obviously superior to the methods with single feature information and it is also robust to posture without increasing algorithm complexity.
出处 《光电子.激光》 EI CAS CSCD 北大核心 2012年第10期1977-1982,共6页 Journal of Optoelectronics·Laser
基金 中央高校基本科研业务经费资助(CDJXS12160004)资助项目
关键词 人脸识别 整体信息 局部信息 信息融合 face recognition global information local information information fusion
  • 相关文献

参考文献5

二级参考文献61

  • 1罗先波,钟约先,李仁举.三维扫描系统中的数据配准技术[J].清华大学学报(自然科学版),2004,44(8):1104-1106. 被引量:99
  • 2朱延娟,周来水,张丽艳.散乱点云数据配准算法[J].计算机辅助设计与图形学学报,2006,18(4):475-481. 被引量:97
  • 3徐金亭,刘伟军,孙玉文.基于曲率特征的自由曲面匹配算法[J].计算机辅助设计与图形学学报,2007,19(2):193-197. 被引量:19
  • 4冯少彤,鲍毅,聂守平,王亮.基于多特征空间的三维目标离面旋转识别[J].中国激光,2007,34(7):952-956. 被引量:5
  • 5Zhong C, Sun Z N, Tan T N, He Z F. Robust 3D face recognition in uncontrolled environments. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Anchorage, USA: IEEE, 2008. 1-8. 被引量:1
  • 6Bowyer K W, Chang K, Flynn P. A survey of approaches and challenges in 3D and multi-modal 3D + 2D face recognition. Computer Vision and Image Understanding, 2006, 101(1): 1-15. 被引量:1
  • 7Lu X G, Jain A K. Deformation modeling for robust 3D face matching. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(8): 1346-1356. 被引量:1
  • 8Chang K I, Bowyer K W, Flynn P J. Multiple nose region matching for 3D face recognition under varying facial expression. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(10): 1695-1700. 被引量:1
  • 9Besl P J, Mckay H D. A method for registration of 3-D shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(2): 239-256. 被引量:1
  • 10Mian A S, Bennamoun M, Owens R.An efficient multimodal 2D-3D hybrid approach to automatic face recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(11): 1927-1943. 被引量:1

共引文献58

同被引文献39

  • 1李庆敏.多特征融合的三维人脸识别技术研究[D].厦门:厦门大学,2010. 被引量:2
  • 2CHOUDHARY K, GOEL N. A review on face recognition technique[ C]. Proc of International Conference on Com- munication and Electronics System Design,2013 : 87601 E- 1-87601E-10. 被引量:1
  • 3DU S Y, ZHENG N N. Scaling iterative closest point algo- rithm for registration of m-D point sets[ J]. Journal of Vis- ual Communication and Image Representation,2010, 21 (5-6) :442-452. 被引量:1
  • 4XU C, LI S, TAN T, QUAN L. Automatic 3 D face recogni- tion from depth and intensity Gabor features [ J ]- Pattern Recognition, 2009,42 ( 9 ) : 1895-1905. 被引量:1
  • 5EFRSTY B, BILGAZYEV E, SHAH S, et al. Profile-based 3 D aided face recognition [ J ]. Pattern Recognition, 2012,45( 1 ) :43-63. 被引量:1
  • 6TANG H,YIN B,SUN Y,et al. 3D face recognition using local binary patterns [J]. Signal Processing, 2012, 93 ( 8 ) :2190-2198. 被引量:1
  • 7SMEETS D, KEUSTERMANS J, VANDERMEULEN D, et al. MeshSIFT: Local surface features for 3D face recogni- tion under expression variations and partial data [ J l- Computer Vision and Image Understanding, 2013, 117(2) :158-169. 被引量:1
  • 8MIAN A, BENNAMOUN M, OWENS R. Automatic 3D face detection, normalization and recognition [ C ]. Proc of Third International Symposium on 3D Data Processing, Visualization, and Transmission ,2006:735-742. 被引量:1
  • 9YANG J, ZHANG D. Two-dimensional PCA:A new ap- proach to appearance-based face representation and rec- ognition[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence ,2004,26( 1 ) : 131-137. 被引量:1
  • 10XU G L, CHANDRAJIT B. Regularization of B-spline ob- jects [ J ]. Computer Aided Geometric Design, 2011, 28(1) :38-49. 被引量:1

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部