期刊文献+

非自治离散动力系统的强跟踪性 被引量:5

The Strongly Shadowing Property of the Nonautonomous Dynamical Systems
下载PDF
导出
摘要 设(X,d)为度量空间,fk∶X→X,k=1,2…为一列连续映射,f0为单位映射,F={fk}∞k=0为X上的一个时变映射族,称(X,F)为非自治离散动力系统.因为非自治离散动力系统能够更能灵活地描述现实世界的一些动态,所以非自治离散动力系统的动力性态是人们最近所关注的重要问题.然而由于非自治离散动力系统要比自治离散动力系统更加复杂,因此,研究非自治离散动力系统的动力性态是比较困难的.通过在非自治离散动力系统中引进强跟踪性的概念,讨论了非自治离散动力系统强跟踪性的拓扑共轭不变性,并证明了有限个非自治离散动力系统的乘积系统具有强跟踪性的充分必要条件是每个非自治离散动力系统均具有强跟踪性. Let (X,d)be compact metric space,fk: X→X,k = 1,2,., be a sequence of continuous map,f0 be identical map, and let F = {fk }km-0 be a time varying homeomorphisms on X, ( X, F) is called a nonautonomous dynamical systems. The study of dynamics of nonautonomous dynamical systems was widely concerned, because they are more flexible tools for the description of real world processes. While the study of dynamics of nonautonomous dynamical systems is ysyally more difficult than the same studies in the setting of autonomous dynamical systems. The strongly shadowing property for nonautonomous dynamical systems was studied. We proved that strongly shadowing property of nonautonomous dynamical system has topological conjugate invariance, by introducing the concept of the strongly shadowing property of nonautonomous dynamical system. And we also prove that the finite product of nonautonomous dynamical system has strongly shadowing property, if and only if each nonautonomous dynamical system has strongly shadowing property.
作者 孟鑫 刘岩
出处 《吉林师范大学学报(自然科学版)》 2016年第3期93-96,共4页 Journal of Jilin Normal University:Natural Science Edition
基金 吉林省教育厅"十二五"科学技术研究项目(吉教科合字[2014]第492号)
关键词 强跟踪性 拓扑共轭 积映射 strongly shadowing property product map topological conjugacy
  • 相关文献

参考文献11

  • 1CHUANJUN T,GUANRONG C. Chaos of a sequence of maps in a metric space[J]. Chaos,Solitons and Fractals 2006,28(4) :1067-1075. 被引量:1
  • 2BALIBREA F, OPROCHA P. Weak mixing and chaos in nnnautonomous discrete systems [J]. Appl Math Lett,2012,25 (8) :1135-1141. 被引量:1
  • 3DHAVAL T, RUCHI D. On nonautonomous discrete dynanfical systems [J] Inter J Anal ,2014, ( 11 ) :1-6. 被引量:1
  • 4ZHU Y, LIU Z, XU X, et al. Entropy of nonautonomous dynamical systems [J]. J Korean Math Soc ,2012,49 ( 1 ) : 165-185. 被引量:1
  • 5MOURON C. Positive entropy on non-autonomous interval maps and the topology of the inverse limit space [J] . Topology and its Applications 2007,154 (4) : 894-907. 被引量:1
  • 6宋晓倩,王良伟,冯玉明.时变参数动力系统的两种跟踪性质[J].纯粹数学与应用数学,2012,28(5):641-648. 被引量:2
  • 7PILYUGIN S Y. Shadowing in Dynamical Systems [M]. Berlin : Springer, 1999. 被引量:1
  • 8EASTON R. Chain transitivity and the domain of influence of an invariant set in : The structure of attractors in dynamical systems [M]. Lecture Notes in Math Berlin : Springer-Verlag, 1999. 被引量:1
  • 9朱玉峻,张金莲,郑宏文.符号系统的2类跟踪及其应用[J].河北师范大学学报(自然科学版),2004,28(2):109-112. 被引量:6
  • 10[3]Gu Rong bao,Sun Tai xing,Xia Zhi jie.Asymptotic pseudo orbittracing property for lift systems[J].广西大学学报(自然科学版),2003,28(3)∶214-216. 被引量:1

二级参考文献20

  • 1杨润生.伪轨跟踪与混沌[J].数学学报(中文版),1996,39(3):382-386. 被引量:23
  • 2PILYUGIN S Y.Shadowing in Dynamical Systems[M].Berlin:Springer,1999. 被引量:1
  • 3PALMER K.Shadowing in Dynamical Systems:Theory and Applications[M].Boston:Klumer Academic Publishers,2000. 被引量:1
  • 4WALTERS P.On the Pseudo Orbit Tracing Property and Its Relationship to Stability[M].Berlin:Springer,1977.231-244. 被引量:3
  • 5Li T Y, Yorke J A. Period three implies chaos[J]. American Mathematical Monthly, 1975~82:985-992. 被引量:1
  • 6Bowen R. Entropy for group endomorphisms and homogeneous spaces [J]. Transactions of the American Mathematical Society, 1971,153:401-414. 被引量:1
  • 7Vellekoop M, Berglund R. On intervals, Transitivity=chaos[J]. American Mathematical Monthly, 1994,101:353- 355. 被引量:1
  • 8Kolyada S, Snoha L. Topological entropy of non-autonomous dynamical systems[J]. Random and Computa- tional Dynamics, 1996,4,205-233. 被引量:1
  • 9Tian C J, Chen G R. Chaos of a sequence of maps in a metric space[J]. Chaos Solitons and Fractals, 2006,28:1067-1075. 被引量:1
  • 10Mouron C. Positive entropy on non-autonomous interval maps and the topology of the inverse limit space[J] Topology and its Applications, 2007,154:894-907. 被引量:1

共引文献5

同被引文献21

引证文献5

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部