摘要
通过引进变参数动力系统逐点跟踪性的概念,证明了变参数动力系统逐点跟踪性是拓扑共轭不变的,有限个变参数动力系统的乘积系统具有逐点跟踪性当且仅当每个变参数动力系统均具有逐点跟踪性.
The pointwise shadowing property of variable-parameter dynamical system has topological conjugate invariance, by introducing the concept of the pointwise shadowing property of variable-parameter dynamical system. And the finite product of variable-parameter dynamical system has pointwise shadowing property, if and only if each variable-parameter dynamical system has pointwise shadowing property.
出处
《北华大学学报(自然科学版)》
CAS
2014年第3期299-301,共3页
Journal of Beihua University(Natural Science)
基金
吉林省教育厅科学技术研究项目(2014492)
四平市科技发展计划项目(2013037)
关键词
逐点跟踪性
拓扑共轭
积映射
pointwise shadowing property
topological conjugacy
product map