期刊文献+

基于SMMC模型的数据多流形结构分析研究 被引量:3

Research on Multi-manifold Data Based on SMMC
原文传递
导出
摘要 采用混合多流形谱聚类模型(SMMC)对独立子空间、非独立子空间,非线性良分离及非线性交叉等流形聚类中的四种典型数据进行聚类,并与其他流形聚类方法进行比较,发现SMMC模型聚类效果良好且具有强鲁棒性和泛化能力.将SMMC模型运用于具有混合多流形结构的工件外部边缘轮廓进行聚类,结果显示SMMC模型能够很好的将其分为三类.针对SMMC模型复杂度高、选取参数困难及运行时间长的问题,提出了基于模拟退火遗传算法SMMC模型,结果发现改进后的模型能够大大缩短运行时间. This paper firstly adopts spectral multi-manifold clustering (SMMC) to four typical data of independent subspace, non-independent subspace, nonlinear well-separated and nonlinear overlapped, then follows by a comparison in results among these four clustering methods. The research shows that the SMMC works fine. Moreover, there are strong robustness and well generalization in it. Afterwards, the SMMC is used to cluster in contours of a workpiece characterized by multi-manifold, which is well classified into three groups. Aimed at the problems of high complexity in time and space as well as difficulty in parameters selection, we put forward a modified SMMC model with the advantages of shortening the uptime greatly based on simulated annealing genetic algorithm.
出处 《数学的实践与认识》 北大核心 2016年第14期163-172,共10页 Mathematics in Practice and Theory
关键词 大数据 流形学习 多流形谱聚类 模拟退火遗传算法 big data manifold learning spectral multi-manifold clustering simulated annealing genetic algorithm
  • 相关文献

参考文献14

  • 1Procopiuc C M, Jones M, Agarwal P K, and Murali T M. A monte carlo algorithm for fast projectiveclustering[C]//In Proceedings of the 2002 ACM SIGMOD international conference on Management of data, 2002, 418-427. 被引量:1
  • 2Vidal R, Ma Y, Sastry S. generalized principal components analysis[J]. IEEE Trans Pattern Anal Mach Intell, 2005, 27(12): 1945 - 1959. 被引量:1
  • 3Chert G, Lerman G. Spectral curvature clustering (SCC)[J]. International Journal of Computer Vision, 2009, 81(3): 317-330. 被引量:1
  • 4Ho J, Yang M H, Lim J, et al. Clustering appearances of objects under varying illumination con- ditions[C]// Computer Vision and Pattern Recognition, 2003. Proceedings. 2003 IEEE Computer Society Conference on. 2003:1-11-I-18 vol.1. 被引量:1
  • 5王勇..基于流形学习的分类与聚类方法及其应用研究[D].国防科学技术大学,2011:
  • 6刘向阳..多流形数据建模及其应用[D].上海交通大学,2011:
  • 7王立志..基于流形学习的高光谱图像降维与分类研究[D].重庆大学,2012:
  • 8Donoho D L. High-dimensional Data Analysis: The Cwses and Blessings of Dimensionality[C]// Lecture-Math Callenges of Century, 2000: 178-183. 被引量:1
  • 9Hyvarinen A, Karhunen J, Oja E. Independent Component analysis. Wiley Series on Adaptive and Learning System for Signal Processing[C]// Int Symposium on Independent Analysis Blind Signal Separation, 2001. 被引量:1
  • 10冯燕,何明一,宋江红,魏江.基于独立成分分析的高光谱图像数据降维及压缩[J].电子与信息学报,2007,29(12):2871-2875. 被引量:38

二级参考文献8

  • 1吴家骥,吴成柯.基于Karhunen-Loeve和小波变换的多光谱图像三维集合嵌入块编码压缩算法[J].电子与信息学报,2005,27(8):1244-1248. 被引量:3
  • 2张绍荣,苏令华.一种基于主成分分析的高光谱图像压缩方法[J].无线电工程,2005,35(9):53-54. 被引量:3
  • 3Kaarna A, Zemcik P, and iainen H, et al.. Compression of multispectral remote sensing images using clustering and spectral reduction. IEEE Trans. on Sci. Remote Sensing, 2000, 38(2): 1588-1592. 被引量:1
  • 4Ramakrishna B, Wang Jing, and Chang C I, et al.. Spectral/spatial hyperspectral image compression in conjunction with virtual dimensionality. Algorithms and technologies for multispectral, hyperspectral, and ultraspectral imagery XI, Proc. 5806, SPIE, 2005: 772-781. 被引量:1
  • 5Robila S A and Varshney P K. A fast source separation algorithm for hyperspectral image processing. IEEE International Conference on Geoscience and Remote Sensing, Toronto, Canada, 2002, 6: 3516-3518. 被引量:1
  • 6Lennonl M, Mercierl G, and Mouchotl M C, et al.. Independent component analysis as a tool for the dimensionality reduction and the representation of hyperspectral images. IEEE International Conference on Geoscience and Remote Sensing, Sydney, Australian, 2001, 6: 2893-2895. 被引量:1
  • 7Hyvarinen A. Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans. on Neural Networks, 1999,10(3): 626-634. 被引量:1
  • 8闫敬文,沈贵明.基于KLT/WT/WTVQ的三维多光谱数据压缩方法[J].厦门大学学报(自然科学版),2001,40(5):1051-1055. 被引量:3

共引文献37

同被引文献16

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部