期刊文献+

基于Tucker3分解的三路数据聚类方法 被引量:6

Three-way Data Clustering Method Based on Tucker3 Decomposition
原文传递
导出
摘要 从两路数据聚类分析到三路数据聚类分析实质上是由平面分析到立体分析的过程。三路数据聚类方法研究的核心之一是如何把传统的两路截面数据聚类技术向三路数据聚类扩展的问题。本文基于Tucker模型的思路,提出一种先对三路数据执行矩阵分解,而后进行聚类分析的三路数据聚类方法。这种方法不但能够通过核心矩阵反映三路数据三个模式信息联系的强度大小,而且还可以在一个分解框架下对三路数据的三个模式同时进行聚类分析。实证分析结果表明,本文提出的聚类方法不但灵活、易于理解,同时也有着良好的判别性和实用性。 Clustering analysis from two-way data to three-way data is a process of analysis from plane to three-dimensional. One of core problems about three-way data clustering method is how to extend the traditional clustering technology of the two-way data to the three-way data. Based on Tucker3 model, this paper puts forward a three-way data clustering method which performs matrix decomposition and then takes the component decomposition of three ways as the synthetic weights. Through the core matrix data, this method can not only reflect the strength of the correlation information in addition to three ways, but also can perform clustering analysis at the same time in one framework of three-mode com- ponent decomposition. Empirical analysis results show that the proposed clustering method is not only flexible and easy to be understood, but also have a good discrimination and practicality.
出处 《数理统计与管理》 CSSCI 北大核心 2016年第1期71-80,共10页 Journal of Applied Statistics and Management
基金 国家社科基金项目(15BTJ033) 国家自然科学基金项目(71271206) 江苏高校哲学社会科学研究一般项目(2014SJB406) 江苏师范大学博士学位教师科研支持项目(12XWR016)资助
关键词 三路数据 相似性测度 综合集成 Tucker分解 聚类方法 three-way data, similarity measure, comprehensive synthesis, tucker3 decomposition, clus- tering analysis
  • 相关文献

参考文献16

  • 1Kroonenberg P M. Three-mode Principal Component Analysis: Theory and Applications [M]. Leiden: DSWO Press, 1983:14 18. 被引量:1
  • 2Jugrez M A, Mark F J S. Model-based clustering of non-Gaussian panel data based on Skew-T distributions [J]. Journal of Business & Economic Statistics, 2010, 28(1): 52 66. 被引量:1
  • 3Bonzo D C, Hennoeilla A Y. Clustering panel data via perturbed adaptive simulated annealing and genetic algorithms [J]. Advances in Complex Systems, 2002, 5(4): 339 360. 被引量:1
  • 4Carroll J D, Arabic P. Multidimensional scaling [J]. Annual Review of Psychology, 1980, 31:607 649. 被引量:1
  • 5Rizzi A. On the synthesis of three way data matrices [A]. In: Coppi R, & Bolasco S (Eds.), Multiway Data Analysis [C]. North-holland: Elsevier Science Pubishers, 1989, 143-154. 被引量:1
  • 6Porro-Munoz D, Duin R P W, Talavera I, Orozco-Alzate M. Classification of three-way data by the dissimilarity representation [J]. Signal Processing, 2011, 91 (11): 2520 2529. 被引量:1
  • 7Vichi M, Rocci R, Henk A, Kiers L. Simultaneous component and clustering models for three-way data: Within and between approaches [J]. Journal of Classification, 2007, 24(1): 71 98. 被引量:1
  • 8朱建平,陈民恳.面板数据的聚类分析及其应用[J].统计研究,2007,24(4):11-14. 被引量:100
  • 9任娟.多指标面板数据融合聚类分析[J].数理统计与管理,2013,32(1):57-67. 被引量:45
  • 10张可,刘思峰.灰色关联聚类在面板数据中的扩展及应用[J].系统工程理论与实践,2010,30(7):1253-1259. 被引量:63

二级参考文献42

共引文献238

同被引文献58

引证文献6

二级引证文献60

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部