期刊文献+

基于小波域多分辨率MRF的声呐图像目标分割 被引量:2

Sonar image object segmentation based on multi-resolution MRF model in wavelet domain
下载PDF
导出
摘要 声呐图像受噪声影响严重,分辨率低,传统算法对其目标分割效果较差,为此,提出了小波域多分辨率MRF模型的声呐图像分割算法。小波域多分辨率分析有利于提取声呐图像弱特征信息;每一分辨率中的观测特征采用高斯混合模型建模,尺度内同标记的观测特征用高斯模型建模,用各向同性的双点多级逻辑(Multi-Level Logistic,MLL)模型建模每一尺度的标记场;最后,用迭代条件模式(Iterated Conditional Mode,ICM)实现多分辨率马尔可夫随机场(Multi-Resolution Markov Random Field,MRA-MRF)中能量函数的最优解,获取标记场,完成声呐图像分割。从视觉效果和定量分析两方面验证。对比实验的结果表明,该文算法能有效地提取声呐图像的弱目标信息,较好地将目标区域和背景区域分割出来,具有较高的分割精度和鲁棒性。 Since sonar image is usually with characteristics of serious noise pollution and low resolution, it is difficult to get object segmentation results with high precision by traditional algorithms. A sonar image segmentation algorithm based on multiresolution Markov rand filed(MRF) model in wavelet domain is proposed. In the wavelet domain, the multiresolution analysis is advantageous to extracting the weak characteristic information of sonar image. Using Gauss mixture model describes the observational characteristics of each scale and the characteristics with a same mark in the intra-scale obey the Gauss distribution. The label field of each scale is modeled by isotropic two-point MLL model. Finally, the optimal solution of the energy function in the MRF model is obtained by using iterated conditional mode(ICM) to get the tag field, and complete the sonar image segmentation. From the two aspects of visual effects and quantitative analysis, to compare the experiment results, the proposed algorithm can extract the weak target information of sonar images effectively, which can better distinguish the target region and the background region, and has higher segmentation accuracy and robustness.
出处 《声学技术》 CSCD 北大核心 2016年第3期198-203,共6页 Technical Acoustics
基金 国家自然科学基金(联合基金)重点项目(U1401252) 国家自然科学基金项目(61272237) 省重点实验室开放基金项目(2015KLA05)资助
关键词 声呐图像分割 小波分析 多分辨率马尔可夫随机场(MRA-MRF) MLL模型 sonar image segmentation wavelet analysis Multi-resolution Markov random field(MRA-MRF) Multi Level Logistic(MLL) model
  • 相关文献

参考文献13

  • 1Reed S, Petillot Y, Bell J. An automatic approach to the detection and extraction of mine features in sidescan sonar[J]. IEEE Journal of Oceanic Engineering, 2003, 28(1): 90-104. 被引量:1
  • 2卢建斌,张云雷,席泽敏,张明敏.基于统计特征的水下目标一维距离像识别方法研究[J].声学技术,2015,34(2):121-126. 被引量:4
  • 3Max Mignotee, Christophe Collet, Partriek P, et al. Sonar image segmentation using an unsupervised hierarchical MRF model [J]. IEEE Trans. on Image Processing, 2000, 9(7): 1216-1231. 被引量:1
  • 4Ashraf A B, Gavenonis S C, Daye D, et al. A Multichannel markov random field framework for tumor segmentation with an application to classification of gene expression-based breast cancer recurrence risk[J]. IEEE Trans. on Medical Imaging, 2013, 32(4): 637 - 648. 被引量:1
  • 5Sener O, Ugur K, Alatan A A. Efficient turf energy propagation for video segmentation via bilateral filters[J]. IEEE Trans. on Multimedia, 2014,16(5): 1292-1302. 被引量:1
  • 6Crouse M S, R D Nowak, R G Baraniuk. Wavelet-based statistical signal processing using hidden markov models[J]. IEEE trans. On signal processing, 1998, 46(4): 886-902. 被引量:1
  • 7Choi H, Baraniuk R G. Multiscale image segmentation using wavelet-domain hidden markov models[J]. IEEE Trans. on Image Processing, 2001, 10(9): 1309-1321. 被引量:1
  • 8Liu Guoying, Qin Qianqing, Mei Tiancan, et al. Leiguang wang. supervised image segmentation based on tree-structured mrf model in wavelet domain[J]. IEEE Geoscience and Remote Sensing Letters, 2009, 6(4): 850-854. 被引量:1
  • 9Geman S, Geman D. Stochastic relaxation, gibbs distributions, and the bayesian restoration of images[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1984, 6(6): 721-741. 被引量:1
  • 10MONTEIRO F C, CAMPILHO A C. Performance evaluation of image segmentation[J]. Computer science, 2006, 4141(3): 248-259. 被引量:1

二级参考文献6

共引文献3

同被引文献17

引证文献2

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部