期刊文献+

基于统计特征的水下目标一维距离像识别方法研究 被引量:4

Research on underwater target recognition with statistical features of high resolution range profiles
下载PDF
导出
摘要 目标探测与识别是水下预警监视、信息对抗的重要组成部分。针对水下目标一维距离像识别问题,通过提取目标的长度、重心、高阶中心矩等特征,分析了所提取特征的统计分布特性,利用假设检验构建了目标识别特征的统计模型。结合Bayes统计分类器开展了5类水下目标的识别实验,并与基于距离像回波匹配相关的识别方法进行对比分析,对比结果显示所提出的方法在识别率和运算量方面均有明显改善。 Target detection and recognition is the main issue of the underwater surveillance and information warfare. In this paper, five features, (target length, mass, the second center moment, third center moment and fourth center moment), are extracted for the target recognition application from the original high resolution range profiles. The statistical characteristics of the extracted features are analyzed and the statistical model is built with the method of hypothesis testing. FinaUy, the recognition experiments of the five difference targets are made with the Bayes statistical classifier. The results compared with the traditional template correlation method for the high resolution range profiles show that the proposed method has the obvious advantage in recognition rate and computational complexity.
出处 《声学技术》 CSCD 北大核心 2015年第2期121-126,共6页 Technical Acoustics
基金 国家自然科学基金(61372165) 中国博士后基金特别资助(2012T50874)
关键词 水下目标识别 一维距离像 统计特征 贝叶斯分类器 underwater target recognition high resolution range profile statistical feature Bayes classifier
  • 相关文献

参考文献7

  • 1姜永珉,郝新亚,冯海泓,惠俊英.水中目标二维亮点分布研究[J].声学学报,1997,22(1):79-86. 被引量:21
  • 2Groen J, Coiras E, Del Rio J, et al. Model-based Sea Mine Classification with Synthetic Aperture Sonar[J]. IET Radar, Sonar and Navigation, 2010, 4(1): 62-73. 被引量:1
  • 3Tait P. Introduction to Radar Target Recognition[M]. London: The Institution of Engineering and Technology, 2005. 被引量:1
  • 4张明敏,卢建斌,王薇.水声模拟测量舰船目标雷达距离像相似性问题[J].声学技术,2010,29(4):183-186. 被引量:1
  • 5Pasala K M, Malas J A. HRR Radar Signature Database Validation for ATR - An Information Theoretic Approach[J]. IEEE Trans. AES, 2011, 47(2): 1045-1059. 被引量:1
  • 6袁莉,刘宏伟,保铮.基于中心矩特征的雷达HRRP自动目标识别[J].电子学报,2004,32(12):2078-2081. 被引量:33
  • 7边肇祺等编著..模式识别 第2版[M].北京:清华大学出版社,2000:338.

二级参考文献11

  • 1喻亮,博士学位论文,1993年 被引量:1
  • 2惠俊英,水下声信道,1992年 被引量:1
  • 3汤渭霖,中国船舶科技报告,1995年 被引量:1
  • 4Hudson S,Psaltis D.Correlation filters for aircraft identification from radar range profile[J].IEEE Trans AES,1993,29(3):741-746. 被引量:2
  • 5Li H-J,Yang S-H.Using range profiles as feature vectors to identify aerospace objects[J].IEEE Trans AP,1993,41(3):261-268. 被引量:2
  • 6Jacobs S P,O'sollivan J A.Automatic target recognition using sequences of high resolution radar-profiles[J].IEEE Trans AES,2000,36(2):364-380. 被引量:1
  • 7Xing M D,Bao Z,Pei B N.The properties of high-resolution range profiles[J].Optical Engineering,2002,41(2):493-504. 被引量:2
  • 8Liao X,Bao Z.Circularly integrated bispectra:novel shift invariant featrue for high-resolution radar target recognition[J].IEEE Electronics Letters,1999,34:1879-1880. 被引量:1
  • 9Zhang X,Shi Y,Bao Z.A new feature feature vector using selected bispectra for signal classification with application in radar target recognition[J].IEEE Trans SP,2001,49(9):1875-1885. 被引量:1
  • 10Kim K T,Seo D K,Kim H T.Efficient radar target recognition using the MUSIC algorithm and invariant features[J].IEEE Trans A P,2002,50(3):325-337. 被引量:1

共引文献52

同被引文献29

  • 1孙雪荣,朱锡.船舶水下结构噪声的研究概况与趋势[J].振动与冲击,2005,24(1):106-113. 被引量:22
  • 2欧世峰,赵晓晖,顾海军.改进的基于信号子空间的多通道语音增强算法[J].电子学报,2005,33(10):1786-1789. 被引量:8
  • 3史广智,胡均川.舰船噪声调制谱谐波族结构特性理论分析[J].声学学报,2007,32(1):19-25. 被引量:32
  • 4Reed S, Petillot Y, Bell J. An automatic approach to the detection and extraction of mine features in sidescan sonar[J]. IEEE Journal of Oceanic Engineering, 2003, 28(1): 90-104. 被引量:1
  • 5Max Mignotee, Christophe Collet, Partriek P, et al. Sonar image segmentation using an unsupervised hierarchical MRF model [J]. IEEE Trans. on Image Processing, 2000, 9(7): 1216-1231. 被引量:1
  • 6Ashraf A B, Gavenonis S C, Daye D, et al. A Multichannel markov random field framework for tumor segmentation with an application to classification of gene expression-based breast cancer recurrence risk[J]. IEEE Trans. on Medical Imaging, 2013, 32(4): 637 - 648. 被引量:1
  • 7Sener O, Ugur K, Alatan A A. Efficient turf energy propagation for video segmentation via bilateral filters[J]. IEEE Trans. on Multimedia, 2014,16(5): 1292-1302. 被引量:1
  • 8Crouse M S, R D Nowak, R G Baraniuk. Wavelet-based statistical signal processing using hidden markov models[J]. IEEE trans. On signal processing, 1998, 46(4): 886-902. 被引量:1
  • 9Choi H, Baraniuk R G. Multiscale image segmentation using wavelet-domain hidden markov models[J]. IEEE Trans. on Image Processing, 2001, 10(9): 1309-1321. 被引量:1
  • 10Liu Guoying, Qin Qianqing, Mei Tiancan, et al. Leiguang wang. supervised image segmentation based on tree-structured mrf model in wavelet domain[J]. IEEE Geoscience and Remote Sensing Letters, 2009, 6(4): 850-854. 被引量:1

引证文献4

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部