期刊文献+

基于和差直方图的岩屑纹理分析与分类识别 被引量:1

Texture Analysis and Recognition of Cuttings Based on Sum and Difference Histograms
下载PDF
导出
摘要 随着PDC钻头的推广使用,传统的岩屑录井方法已难以分析如此细小的岩屑。基于数字图像处理技术对岩屑分类识别技术进行研究,首先利用和差直方图统计方法对岩屑进行纹理特征分析和提取,接着运用贝叶斯分类器进行分类识别,实验结果表明,此统计特征提取方法对于大部分岩屑可以很好地获取其主要特征,并最终取得理想的识别结果。此技术的发展将提高现场录井人员的工作效率和识别准确率。 Because of the application of Polycrystalline Diamond Compact Bit,the traditional cutting logging methods are facing many difficulties,and they are no longer applicable to describe so small cuttings.So researches are based on the numerical image processing technology.First,analyses and extracts the texture features of cuttings with sum and difference histograms.Then,recognizes it by Bayes classifier.The result suggests it is useful to acquire the main features for most cuttings and has a good result of recognition.The improvement of this technology will raise rapidly the work efficiency and the accuracy of recognition for site geologists.
出处 《中国海洋大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第3期99-104,共6页 Periodical of Ocean University of China
基金 国家高技术研究发展计划项目(2002AA615170) 中国石化胜利油田有限公司技术开发项目资助
关键词 岩屑 岩性 和差直方图 识别 cuttings lithology sum and difference histograms recognition
  • 相关文献

参考文献11

二级参考文献24

  • 1黄广龙,余忠华,吴昭同,余军合.基于粗集理论的多因素数据分析[J].浙江大学学报(工学版),2001,35(4):441-441. 被引量:7
  • 2蔡永香,肖慈珣,侯庆功,李厚裕.应用神经网络识别地层特性[J].测井技术,1994,18(6):424-430. 被引量:5
  • 3[1]O C Zienkiewicz,R L Taylor. Importance of fast vision in winning the First Micro-Robot World Cup Soccer Tournament.Robotics and Autonomous Systems, 1997-09-10;21: 139~147 被引量:1
  • 4[2]Rogers D F,J A Adams. Procedure Elements for Computer Graphics [M].McGraw-Hill, New York 被引量:1
  • 5[3]Obta Y,Kanade T,Sakie T.Color Information for Region Segmentation. CGIP, 1980; 13: 222~241 被引量:1
  • 6[4]N R Pal,J C Bezdek,E C K Tsao. Generalized Clustering Networks and Kohonen's Self-Organizing Scheme[J].IEEE Trans on Neural Networks, 1993 ;4 ( 4 ) 被引量:1
  • 7朱长青,杨晓梅.具有更佳分辨率小波分解的遥感影像纹理分类[J].地理研究,1997,16(1):53-59. 被引量:11
  • 8方锡贤 熊玉芹 牛书立著.PDC钻头钻井录井技术方法探讨[M].北京:石油工业出版社,2004.. 被引量:1
  • 9Myint S W.Fractal Approaches Texture Analysis and Classifi cation of Remotely Sensed Data[J].International Journal of Remote Sensing,2003,24(9):1925-1947. 被引量:1
  • 10Andrew LAINE,Jian FAN. Texture classification by wavelet packet signatures[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence,1993,15(11):1186-1191. 被引量:1

共引文献41

同被引文献6

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部