期刊文献+

基于上下文MRF模型的彩色街景图像分类

Image Classification of Color Street Based on Contextual MRF Model
下载PDF
导出
摘要 利用上下文马尔可夫随机场(Markov Random Field,MRF)模型,将图像分类问题转化为能量函数最小化(最优化)问题。该方法构建了MRF关于彩色街景图像的先验观测场模型,并利用迭代条件模式(Iterated Conditional Model,ICM)算法获得后验标记场能量最小。通过和模糊C均值(Fuzzy C-means,FCM)算法实验对比表明,该方法不仅能有效分类,而且分类精度要远高于FCM。 Using the contextual Markov Random Field model can transform the image classification problem into the minimization problem of the energy function. This method constructs the prior observation field model between MRF and the color image of the street and use the iterative conditional mode algorithm to get the minimum energy of the posterior label field. The comparison of this algorithm with FCM shows that it is more effective and efficient than the FCM algorithm.
出处 《价值工程》 2015年第32期224-226,共3页 Value Engineering
关键词 图像分类 上下文 MRF ICM FCM image classification contextual MRF ICM FCM
  • 相关文献

参考文献8

  • 1李石华,王金亮,毕艳,陈姚,朱妙园,杨帅,朱佳.遥感图像分类方法研究综述[J].国土资源遥感,2005,17(2):1-6. 被引量:97
  • 2李青山..基于注意力选择机制的图像分割与场景理解[D].上海交通大学,2012:
  • 3Stan Z Li. Markov Random Field Modeling in Image Analysis (Third Edition) [M].London: Springer-Veda, 2009. 被引量:1
  • 4张斌..基于MRF的SAR图像分类与变化检测应用研究[D].武汉大学,2013:
  • 5罗希平,田捷,诸葛婴,王靖,戴汝为.图像分割方法综述[J].模式识别与人工智能,1999,12(3):300-312. 被引量:232
  • 6Zhao Yindi. Z. L.U Pingxiang, Huang Bo.Classification of High Spatial Resolution Imagery Using Improved Gaussian Markov Random-Field-Based Texture Features. Geoscienee and Remote Sensing, IEEE Transactions on. 2007.45( 5 ):1458-1468. 被引量:1
  • 7Lei,T,Udupa,JK.Performance evaluation of finite normal mixture model-based image segmentation techniques. IEEE Transactions on hnage Processing.2003. 被引量:1
  • 8尤扬,徐盛,胡剑凌.ICM算法在基于MRF模型的图像运动检测中的应用[J].电视技术,2005,29(z1):57-58. 被引量:1

二级参考文献72

  • 1游代安,蒋定华,余旭初.GIS辅助下的Bayes法遥感影像分类[J].测绘科学技术学报,2001,22(2):113-117. 被引量:24
  • 2黎夏.形状信息的提取与计算机自动分类[J].环境遥感,1995,10(4):279-287. 被引量:46
  • 3朱述龙 张占睦.遥感图像获取与分析[M].北京:科学出版社,2000,4.. 被引量:72
  • 4Marr D.视觉计算理论[M].北京:科学出版社,1988.51-80. 被引量:9
  • 5[1]Hu Y, Dennis T J. Simulated annealing and iterated conditional modes with selective and confidence enhanced update schemes. 0-8186-2742-5/92, IEEE. 被引量:1
  • 6[2]Bouthemy P, Lalande P. Motion Detection in an Image Sequence Using Gibbs Distributions [DB/OL]. http:∥intel.ieeexplore.ieee.org/pdocs/epic03/.2001-03-16. 被引量:1
  • 7[3]Dumontier Christophe, Luthon Franck, Charras Jean-Pierre.Real-Time DSP Implementation for MRF-Based Video Motion Detection. IEEE Transactions on Image processing 1999, 8 (10). 被引量:1
  • 8[4]Caplier A, Luthon F. Spatiotemporal Multiresolution Associated To MRF Modelling For Motion Detection. Image Processing and Its Application, 4-6, July, 1995. 被引量:1
  • 9[5]Besag J. On the Statistical Analysis of Dirty Pictures. J.R. Statist. Soc. SerB, 1986, 48: 259-302. 被引量:1
  • 10[6]Simchony Tal, Chelappa Rama. Stochastic and deterministic algorithms for MAP texture segmentation. CH2561-9-/88/0000-1120, IEEE. 被引量:1

共引文献327

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部