期刊文献+

求解旅行商问题的离散花授粉算法 被引量:3

A Discrete Flower Pollination Algorithm for Travelling Salesman Problem
下载PDF
导出
摘要 针对原始花授粉算法(FPA)无法用于求解组合优化问题,提出一种离散的花授粉算法,并将其应用于求解旅行商问题(TSP)。通过重新定义花朵、全局搜索与局部搜索等概念;并对莱维飞行用一种新的方法进行分段,有效避免算法过早陷入局部最优,增强算法的全局搜索能力。最后通过对10个国际通用的TSP数据(TSPLIB)进行测试,并将实验结果与离散粒子群算法(DPSO)、混合离散粒子群算法(HDPSO)、离散布谷鸟搜索(DCS)算法、带有遗传模拟退火的蚁群粒子群(GSA-ACS-PSOT)算法的实验结果进行对比。实验数据显示,该算法在求解旅行商问题中,能较快、较准确地找到最优解,在相同实验条件下,比其他算法求解偏差百分比明显降低。研究结果表明,本文提出的算法具有较好的求解性能。 In view of the standard Flower Pollination Algorithm ( FPA) can not be used to solve combinatorial optimization prob-lem, a Discrete Flower Pollination Algorithm(DFPA) was proposed and then applied to Traveling Salesman Problem (TSP).By redefining the concept of flowers , global search and local search , etc., and Levy flight will be segmented by a new method , ef-fectively avoiding premature falling into local optimum and enhancing the global search ability of the algorithm .Finally the per-formance of the proposed is tested against by some typical instances in the internationally commonly used library of TSP ( TSPLIB) and compared with Discrete Particle Swarm Optimization (DPSO), Hybrid Discrete Particle Swarm Optimization(HDPSO), Dis-crete Cuckoo Search ( DCS) , Genetic Simulated Annealing Ant Colony System with Particle Swarm Optimisation Technique ( GSA-ACS-PSOT) .The results of the tests show that DFPA can quickly , accurately find the optimal solution .Under the same experi-mental conditions , the algorithm reduces the error rate than any other algorithm .The results show that the proposed algorithm has better solving performance .
出处 《计算机与现代化》 2016年第7期37-43,共7页 Computer and Modernization
基金 陕西省自然科学基础研究计划项目(2014 JM1006)
关键词 花授粉算法 离散花授粉算法 旅行商问题 莱维飞行 TSPLIB 偏差百分比 TSPLIB Levy flight TSPLIB percentage deviation
  • 相关文献

参考文献25

  • 1Blum C, Roli A. Metaheuristics in combinatorial optimiza- tion : Overview and conceptual comparison [ J ]. ACM Com- pute Surveys(CSUR) , 2003,35 ( 3 ) :268-308. 被引量:1
  • 2Lawler E L, Lenstra J K, Rinnooy Kan A H G, et al. The Traveling Salesman Problem: A Guided Tour of Combinato- rial Optimization[ M ]. John Wiley & Sons, Incorporated, 1985. 被引量:1
  • 3Papadimitriou C H. Euclidean TSP is NP-complete [ J ].Theoretical Computer Science, 1997,4:237-244. 被引量:1
  • 4Zachariasen M, Dam M. Tabu Search on the Geometric Traveling Salesman Problem [ M ]. Meta-Heuristics, Spring- er, 1996:571-587. 被引量:1
  • 5Potvin J Y. Genetic algorithms for the traveling salesman problem [ J ]. Annals of Operations Research, 1996,63 ( 3 ) : 337-370. 被引量:1
  • 6Qu Liangsheng, Sun Ruixiang. A synergetic approach to genetic algorithms for solving traveling salesman problem [ J ]. Information Sciences, 1999,117 (3) :267-283. 被引量:1
  • 7Marinakis Y, Migdalas A, Pardalos P M. Expanding neigh- borhood GRASP for the traveling salesman problem [ J ]. Computational Optimization and Applications, 2005, 32 ( 3 ) : 231-257. 被引量:1
  • 8Chen Yong, Zhang Pan. Optimized annealing of traveling salesman problem from the-nearest-neighbor distribution [ J]. Physica A: Statistical Mechanics and its Applica- tions, 2006,371 (2) :627-632. 被引量:1
  • 9Dorigo M, Gambardella L M. Ant colonies for the travelling salesman problem[J]. Biosystems, 1997,43(2) :73-81. 被引量:1
  • 10Dorigo M, Gambardella L M. Ant colony system: A coop- erative learning approach to the traveling salesman problem [J ]. IEEE Transactions on Evolutionary Computation, 1997,1 ( 1 ) :53-66. 被引量:1

同被引文献47

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部