期刊文献+

莱维飞行与粒子群的混合搜索算法 被引量:10

Hybrid Search Algorithm on Particle Swarm Optimization and Levy Flight
下载PDF
导出
摘要 粒子群算法在解决多维的复杂优化问题时,存在收敛精度不高和易陷入局部收敛等不足,针对这些问题,将莱维飞行与偏好随机游动引入粒子群算法中,提出莱维飞行与粒子群的混合搜索算法。在该算法的解更新过程中,采用莱维飞行、偏好随机游动与粒子群算法的更新方程以串行方式对得到的解进行更新寻优。实验结果表明,改进后的混合算法与粒子群算法相比较,加快了收敛速度,提高了搜索精度。 Particle swarm optimization algorithm has some weak points to solve multi-dimensional and complex opti- mization problems. Its convergence precision is not high enough, and it is easy to fall into local convergence. In or- der to overcome these problems, Levy flight and preference of rand walk are applied in the basic particle swarm op-timization algorithm. The main method is to incorporate the updating equation of particle swarm optimization algo- rithm with levy flight and preference of rand walk in a serial fashion. The experimental results demonstrate that the improved algorithm has considerable advantages in search accuracy and the convergence speed while comparing with the basic particle swarm algorithm.
出处 《太原科技大学学报》 2016年第1期6-11,共6页 Journal of Taiyuan University of Science and Technology
基金 太原科技大学博士科研启动基金(20142003) 太原科技大学研究生科技创新项目(20145019)
关键词 粒子群优化算法 莱维飞行 函数优化 particle swarm optimization algorithm, levy flight, function optimization
  • 相关文献

参考文献12

  • 1RICARDO DE A L RABILO, MARCUS V LEMOS, DANIEL BARBOSA. Power System Harmonics Estimation using Particle Swarm Optimization[ C ]//IEEE World Congress on Computational Intelligence. Brisbane, Australia,2012 : 10-15. 被引量:1
  • 2Jehad Ababneh.Greedy particle swarm and biogeography-based optimization algorithm[J].International Journal of Intelligent Computing and Cybernetics,2015,8(1):28-49. 被引量:1
  • 3CLAUDIO FABIANO, MOTYA TOLEDO, LUCAS DE OLIVEIRA, et al. A genetic algorithm/mathematical programming ap- proach to solve a two-level soft drink production problem[ J]. Computers & Operations Research,2014,48 (2) :40-52. 被引量:1
  • 4周明秀,程科,汪正霞.动态路径规划中的改进蚁群算法[J].计算机科学,2013,40(1):314-316. 被引量:54
  • 5欧阳喆,周永权.自适应步长萤火虫优化算法[J].计算机应用,2011,31(7):1804-1807. 被引量:58
  • 6李俊吉,崔志华,崔炎,谭瑛.空间分割微粒群算法[J].太原科技大学学报,2010,31(1):19-25. 被引量:4
  • 7张英杰,邵岁锋,Niyongabo Julius.一种基于云模型的云变异粒子群算法[J].模式识别与人工智能,2011,24(1):90-96. 被引量:38
  • 8ZAHRA BEHESHTI, SITI MARIYAM SHAMSUDDIN, SITI SOPHIAYATI YUHANIZ. Binary Accelerated Particle Swarm Algo- rithm (BAPSA) for discrete optimization problems [ J ]. Journal of Global Optimization,2013,57 (2) : 549 -573. 被引量:1
  • 9GIFTSON SAMUEL G, CHRISTOBER ASIR RAJAN C. Hybrid: Particle Swarm Optimization-Genetic Algorithm and Particle Swarm Optimization-Shuffled Frog Leaping Algorithm for Long-term Generator Maintenance Scheduling[ J ]. International Journal of Electrical Power and Energy Systems,2015,65(3) :432 -444. 被引量:1
  • 10YAHYA M,SAKA M P. Construction site layout using multi-objective artificial bee colony algorithm with Levy flights[J]. Au- tomation in Construction,2014,38(2) : 14-29. 被引量:1

二级参考文献90

  • 1李宁,刘飞,孙德宝.基于带变异算子粒子群优化算法的约束布局优化研究[J].计算机学报,2004,27(7):897-903. 被引量:74
  • 2刘常昱,李德毅,杜鹢,韩旭.正态云模型的统计分析[J].信息与控制,2005,34(2):236-239. 被引量:210
  • 3李德毅,孟海军,史雪梅.隶属云和隶属云发生器[J].计算机研究与发展,1995,32(6):15-20. 被引量:1231
  • 4赵吉,孙俊,须文波.一种求解多峰函数优化问题的量子行为粒子群算法[J].计算机应用,2006,26(12):2956-2960. 被引量:15
  • 5KENNEDY J, EBERHART R C. Particle Swarm Optimization [ C ]//IEEE International Conference on Neural Networks, Australia, 1995 : 1942-1948. 被引量:1
  • 6KENNEDY J,EBERHART R C. A discrete binary version of the particle swarm optimization algorithm[ C]//Proc. of the 1997 conference on systems,Man, and cybernetics (SMC97) , 1997. 被引量:1
  • 7Parsopoulos KE, Vrahatis MN. Particle Swarm Optimization method for Constrained Optimizafionproblems [ C ]//Sincak P, Vascak J, Kvasnicka V, Pospiehal J, editors. Intelligent Technologles-Theory and Applications-New Trends in Intelligent Technologies, 2002:214-220. 被引量:1
  • 8HU XH, EBERHART R. Solving constrained nonlinear optimization problems with particle swarm optimization [ C ]//Callaos N, Leng T,Sanchez B,6th World Multiconference on Systemics ,Cybernetics and Informatics, Proceedings 2002:203-206. 被引量:1
  • 9FUKUYAMA Y, YOSHIDA H. A particle swarm optimization for reactive power and voltage control in electric power systems [ C ]//In: Proceedings of the 2001 Congress on Evolutionary Computation. IEEE, Piscataway, N J, USA,2001 : 87-93. 被引量:1
  • 10CUI X, HARDIN CT, AGADE RK, et al. Tracking non-stationary optimal solution by particle swarmoptimizer[ C ]//Sixth International Conference on Software Engineerng, Artificial Intelligence, Networking and ParalleL/Distributed Computing and First Aics International Workshop on Self-Assembling Wireless Networks, Proceedings. 2005:133-138. 被引量:1

共引文献295

同被引文献96

引证文献10

二级引证文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部