期刊文献+

板状体磁异常数据反演的PSO算法 被引量:10

THE APPLICATION OF PARTICLE SWARM OPTIMIZATION TO THE INVERSION OF MAGNETIC ANOMALY DATA OF TABULAR BODIES
下载PDF
导出
摘要 粒子群优化(PSO)算法是根据鸟群觅食过程中的迁徙和群集模型而提出的用于解决优化问题的算法,是一类随机全局优化技术,它通过粒子间的相互作用搜索复杂空间中的最优区域,其优势在于效率高,且又简单易实现。笔者讨论了PSO算法用于板状体磁异常数据反演的方法,并与遗传算法(GA)进行了比较。理论和实测磁异常数据反演的结果表明,PSO算法具有更高的找寻最优解效率,是一种很有潜力的位场反演工具。 Particle swarm optimization (PSO), based on the idea of a swarm of birds searching for foods, is a new global optimization scheme. It can find optimal regions in searching space through the interaction of individuals in a population of particles, with the ad- vantages of efficient searching and easy implementation. This paper deals with the inversion of the magnetic data of tabular bodies by means of PSO in comparison with the genetic algorithm (GA). The inversion results of theoretical and practical data show that PSO can find the optimal solution with fairly high efficiency.
出处 《物探与化探》 CAS CSCD 北大核心 2009年第2期194-198,共5页 Geophysical and Geochemical Exploration
关键词 PSO算法 GA算法 板状体磁异常 反演 particle swarm optimization genetic algorithm magnetic data of tabular bodies inversion
  • 相关文献

参考文献14

  • 1Kennedy J, Eberhart R C. Particle swarm optimization [ C ]//Proc IEEE Int Conf on Neural Networks, Perth, WA, Australia, 1995. 被引量:1
  • 2Eberhart R C, Kennedy J A. A new optimizer using particle swarm theory[ C]//Proc The Sixth Int Symposium on Micro Machine and Human Science, Nagoya, Japan, 1995. 被引量:1
  • 3李爱国,覃征,鲍复民,贺升平.粒子群优化算法[J].计算机工程与应用,2002,38(21):1-3. 被引量:302
  • 4Robinson J, Rahamat-Samii Y. Particle swarm optimization in electromagnetics[ J]. IEEE Transactions Antennas and Propagation, 2004.52:397. 被引量:1
  • 5Juang C F. A hybrid genetic algorithm and particle swarm optimization for recurrent network design [ J ]. IEEE Transactions on Systems Man and Cybernetics,Part B,2004,34:997. 被引量:1
  • 6Donelli M, Franceschini G, Martini A, et al. An integrated multi-scaling strategy based on a particle swarm algorithm for inverse scattering prnblems [ J ]. IEEE Transactions on Geoscience and Remote Sensing,2006 ,44:298. 被引量:1
  • 7Ranjit S, Shalivahan S. Particle swarm optimization : A new tool to invert geophysical data[ J]. Geophysics,2007,72(2) : F75. 被引量:1
  • 8易远元,袁三一,黄凯,师学明.地震波阻抗反演的粒子群算法实现[J].石油天然气学报,2007,29(3):79-81. 被引量:17
  • 9侯俊胜,管志宁.遗传算法在磁异常反演中的应用[J].物探与化探,1996,20(3):202-208. 被引量:4
  • 10沈艳,郭兵,古天祥.粒子群优化算法及其与遗传算法的比较[J].电子科技大学学报,2005,34(5):696-699. 被引量:89

二级参考文献20

  • 1李爱国.多粒子群协同优化算法[J].复旦学报(自然科学版),2004,43(5):923-925. 被引量:398
  • 2戴冬雪,王祁,阮永顺,王晓超.基于混沌思想的粒子群优化算法及其应用[J].华中科技大学学报(自然科学版),2005,33(10):53-55. 被引量:31
  • 3陈双全,王尚旭,季敏,张永刚.地震波阻抗反演的蚁群算法实现[J].石油物探,2005,44(6):551-553. 被引量:18
  • 4Clerc M, Kennedy J. The particle swarm: Explosion, stability, and convergence in a multi-dimensional complex space[J]. IEEE Transactions on Evolutionary Computation, 2002, 6( 1 ) : 58-73. 被引量:1
  • 5Trelea I. The particle swarm optimization algorithm: Convergence analysis and parameter selection[ J ]. Information Processing Letters, 2003, 85(6):317-325. 被引量:1
  • 6Eberhart R, Shi Y. Comparing Inertia Weigthts and Constriction Factors in Particle Swarm Optimization[ C]. IEEE Congress on Evolutionary Computation, Piscataway: IEEE Service Center, 2000. 84-88. 被引量:1
  • 7Kennedy J, Eberhart R. Particle Swarm Optimization[ C]. IEEE Int. Conf. on Neural Networks, Piscataway: IEEE Service Center,1995. 1942-1948. 被引量:1
  • 8Eberhart R, Kennedy J. A New Optimizer Using Particle Swarm Theory[C]. Proc. on Int. Symposium on Micro Machine and Human Science, Piscataway: IEEE Service Center, 1995. 39--43. 被引量:1
  • 9Kennedy J. The Particle Swarm: Social Adaptation of Knowledge[ CI. IEEE Int. Conf. on Evolutionary Computation, Piscataway:IEEE Service Center, 1997. 303-308. 被引量:1
  • 10Shi Y, Eberhart R. A Modified Particle Swarm Optimizer[Cl. IEEE Int. Conf. on Evolutionary Computation, Piscataway: NJ,IEEE Service Center, 1998. 69-73. 被引量:1

共引文献546

同被引文献108

引证文献10

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部