期刊文献+

基于改进朴素贝叶斯的Android恶意应用检测技术 被引量:12

Android Malware Detection Technology Based on Improved Nave Bayesian
原文传递
导出
摘要 在对未知应用静态分析的基础上,提取Android Manifest.xml中申请的权限为特征,采用信息增益算法优化选择分类特征,再采用拉普拉斯校准、乘数取自然对数改进的朴素贝叶斯算法创建恶意应用分类器.通过十折交叉试验验证改进的朴素贝叶斯分类器的准度和精度较高,且通过信息增益优化选择的分类特征在保障准确率的情况下能有效提高检测效率.与k最近邻和k-Means分类器相比,改进的朴素贝叶斯分类器具有较好的分类效果. Permissions are extracted as features via static analysis. The information gain( IG) algorithm is applied to select significant features. The Nave Bayesian( NB) classifier is created which is improved through Laplace calibration and natural logarithm of multiplier. The results with 10-fold cross validation indicate that the improved NB classifier achieves higher accuracy and precision,and the selected features by IG algorithm improve the detection efficiency in ensuring the accuracy of the case. Comparing k-nearest neighbor( KNN) and k-Means classifier,NB classifier has good performance on validity,accuracy and efficiency.
出处 《北京邮电大学学报》 EI CAS CSCD 北大核心 2016年第2期43-47,共5页 Journal of Beijing University of Posts and Telecommunications
基金 国家自然科学基金项目(61272519) "十二五"国家科技支撑计划项目(2012BAH45B00)
关键词 Android权限 恶意应用 信息增益 朴素贝叶斯 Android permission malware application information gain Nave Bayesian
  • 相关文献

参考文献7

  • 1Zhou Yajin, Jiang Xuxuan. Dissecting android malware: characterization and evolution [ C ]//Security and Privacy (SP) , 2012 IEEE Symposium on. San Francisco: IEEE, 2012 : 95-109. 被引量:1
  • 2Mitchell T. Machine learning[ M ]. Beijing: China Ma- chine Press, 2012: 112-136. 被引量:1
  • 3Harrington P. Machine learning in action [ M ]. New York: Manning Publications Co Development, 2013: 62- 82. 被引量:1
  • 4Davis J, Goadrich M. The relationship between precision- recall and ROC curves [ C ]//Proceedings of the 23rd In- ternational Conference on Machine Learning. New York: ACM, 2006 : 233-240. 被引量:1
  • 5Felt A P, Chin E, Hanna S, et al. Android permissions demystified[ C] //Proceedings of the 18'h ACM Confer- ence on Computer and Communications Security. New York: ACM, 2011: 627-638. 被引量:1
  • 6Fei2011ah A, Anuar N B, Salleh R, et al. A review on feature selection in mobile malware detection[ J]. Digital Investigation, 2015, 13: 22-37. 被引量:1
  • 7Cen Lei, Gates C S, Si Luo, et al. A probabilistic dis- criminative model for android malware detection with de- compiled source code[ J]. Dependable and Secure Com- puting, IEEE Transactions on, 2015, 12(4) : 400-412. 被引量:1

同被引文献58

引证文献12

二级引证文献67

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部