期刊文献+

基于多特征的热门微博预测算法研究 被引量:12

Research on the Prediction Algorithm for Sina Popular Micro Blog Based on Multi-features
下载PDF
导出
摘要 随着微博的迅猛发展,微博舆情已经成为研究热点.以新浪微博为研究对象,分析热门微博的影响因素,提出一种基于多特征的热门微博预测算法.首先,对微博的原始特征进行分析,从中提取关键特征.其次,利用信息增益算法,根据微博的传播特征对微博的热度进行度量.最后,结合BP神经网络算法,根据微博的内容和博主特征,预测微博的传播特征,并由此推算微博的热度来预测该微博能否成为热门微博.实验表明,该算法的查准率可以达到75%以上,F1度量值保持在78%左右,能够对刚发布的微博进行热度预测,适用于微博营销和舆情引导等领域. With the rapid development of micro-blogs, micro-blog public opinion has become a research topic. Using sinamicro-blog as the proxy,this paper analyses the factors of popular micro-blog and proposes a prediction algorithm for popular micro-blog based on multi features. Firstly, this paper analyzes the original features of the micro-blog and extracts key features of the micro-biog. Secondly, according to the information gain algorithm, this paperuses the transmission feature of the micro-blog to measure the heat of themicro- biog. Finally, combined with the BP neural network algorithm, this paper usesthe content and blogger feature of the micro-blog to pre- dict the transmission feature of the micro-blog, with which we can calculate the heat of the micro-blog to predict that whether the micro-blog would be popular. It is indicated by experiments that,the precision of the algorithm can reach more than 75% ,the F1 metric can remain at around 78% ,and the algorithm can predict the micro-blog just been published, thus applied in the field of micro-blog marketing and the guidance of public opinion.
出处 《小型微型计算机系统》 CSCD 北大核心 2017年第3期494-498,共5页 Journal of Chinese Computer Systems
基金 郑州大学新媒体公共传播学科招标课题阶段性成果项目(XMTGGCBJSZ05)资助 河南省科技攻关项目(142102310531)资助 郑州市科技攻关计划项目(141PPTGG368)资助
关键词 微博舆情 微博预测 信息增益 BP神经网络 micro-blog public opinion micro-blogprediction information gain BP neural network
  • 相关文献

参考文献7

二级参考文献79

  • 1杨国为,涂序彦.广义人工脑感知联想记忆模型及其实现算法[J].中国医学影像技术,2003,19(z1):70-71. 被引量:2
  • 2刘玉田,梁军,杜正春,夏道止.神经网络用于实际电力系统切机控制决策[J].电力系统及其自动化学报,1996,8(1):18-23. 被引量:2
  • 3俞鸿魁,张华平,刘群,吕学强,施水才.基于层叠隐马尔可夫模型的中文命名实体识别[J].通信学报,2006,27(2):87-94. 被引量:155
  • 4Kwak H, Lee C, Park H, et al. What is Twitter, a Social Net- work or a News Media? I-A]//WWW' 10 Proceedings of the 19th International Conference on World Wide Web, 2010[C]. Raleigh, North Carolina, USA : ACM, 2010 : 591 -600. 被引量:1
  • 5Liu Zi-tao, Yu Wen-chao, Chen Wei, et al. Short Text Feature Selection for Miero-blog Mining [A]//Computational Intelli- gence and Software Engineering, 2010[C]. Wuhan, China: Wu- han University, 2010: 1-4. 被引量:1
  • 6Pak A,Paxoubek Pa Twitter as a Corpus for Sentiment Analy- sis and Opinion Mining[A]//Proceedings of LREC, 2010[C]. Valletta, Malta: European Language Resources Association (ELRA). 2010:1320-1326. 被引量:1
  • 7Allan J,Carbonell JG, et al. Topic Detection and Tracking Pilot Study Final Report[A]//Proceedings of the DARPA Broadcast News Transcription and Understanding Workshop, 1998 [C]. 1998:194-218. 被引量:1
  • 8Sakaki Ti, Okazaki M, Matsuo Y. Earthquake Shakes Twittt User..Real-time Event Detection by Social Sensors [ A] // Pr1 ceedings of the 19th International Conference on World Wi1 Web, 2010[C]. Raleigh, North Carolina: ACM Press, 2010: 85] 861. 被引量:1
  • 9Petrovi S, Osborne M, Lavrenko V. Streaming First Story De- tection with application to Twitter[A]//Proceedings of HLT- NAACL, 2010 [C]. Stroudsburg, PA, USA: Association for Computational Linguisties. 2010:181-189. 被引量:1
  • 10Zhang H P, Yu H K, Xiong D Y, et al. HHMM-based Chinese lexieal analyzer ICTCLAS [A]//. Proceedings of the second SIGHAN workshop on Chinese language processing-Volume 17, 2003 [C]. Sapporo, Japan: Association for Computational Linguistics, 2003 : 184-187. 被引量:1

共引文献304

同被引文献102

引证文献12

二级引证文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部