摘要
A new composite structure based on aluminum foam sandwich and fiber metal laminate was proposed. A layer of glass fiber was provided at the interface between the metal panel and the aluminum foam core in this composite structure, using adhesive technology to bond the materials together by organic glue in the sequence of metal panel, glass fiber, aluminum foam core, glass fiber and metal panel. The experimental results show that the new composite structure has an improved comprehensive performance compared with the traditional aluminum foam sandwiches. The optimized parameters for the fabrication of the new aluminum foam composite structure with best bending strength were obtained. The epoxy resin and low porosity aluminum foams are preferred, the thickness of aluminum sheets should be at least 1.5 mm, and the type of glass fiber has little effect on the bending strength. The main failure modes of the new composite structures with two types of glues were discussed.
在泡沫铝三明治和纤维金属层板的基础上提出一种新型泡沫铝复合结构。这种复合结构是在金属面板和泡沫铝芯材之间添加一层玻璃纤维,采用胶粘技术按"金属面板-玻璃纤维-泡沫铝-玻璃纤维-金属面板"的顺序粘结起来。实验结果显示,新型复合结构相对于泡沫铝三明治的综合性能有所提高。得到了新型泡沫铝复合结构在弯曲强度最佳时的最优制备参数。应选择环氧树脂胶及低孔隙率的泡沫铝,铝板厚度至少为1.5 mm,玻璃纤维的种类对弯曲强度的影响很小。讨论了新型复合结构在两种粘结剂下的主要失效模式。
基金
Project(SS2015AA031101)supported by the National High-tech R&D Program of China