期刊文献+

Electrodeposition of cobalt in double-membrane three-compartment electrolytic reactor 被引量:6

双膜三室电解槽中电沉积金属钴(英文)
下载PDF
导出
摘要 The process parameters were optimized for the electrodeposition of cobalt from cobalt chloride solution in the membrane electrolytic reactor. Effects of parameters such as catholyte composition, current density and temperature on the current efficiency, specific power consumption and quality of deposition were studied. The catholyte was a mixed solution of cobalt chloride, the initial middle electrolyte consisted of diluted hydrochloric acid, and the anolyte was sulfuric acid. An anion exchange membrane separated the catholyte from the middle electrolyte, and a cation exchange membrane separated the anolyte from the middle electrolyte. The results showed that a maximum current efficiency of 97.5% was attained under the optimum experimental condition of an catholyte composition of 80 g/L Co^2+, 20 g/L H3BO3, 3 g/L NaF and pH of 4, at a cathode current density of 250 A/m2 and a temperature of 50 ℃ HCl could be produced in the middle compartment electrochemically up to 0.45 mol/L. 对离子交换膜电解槽中电沉积钴的参数进行了优化研究,并探讨了阴极液成分、电流密度、温度等因素对电沉积钴的电流效率、单位能耗、质量的影响规律。阴极液为含氯化钴混合溶液,初始中间液为稀盐酸溶液,阳极液为硫酸溶液。采用阴离子交换膜将阴极液与中间液隔开,阳离子交换膜将阳极液与中间液隔开。结果表明:最佳实验条件为80 g/L钴、20 g/L硼酸、3 g/L氟化钠、pH 4、电流密度250 A/m^2、温度50°C,在该条件下电流效率为97.5%。中隔室可得到电化学再生的盐酸,酸浓度达到0.45 mol/L,实现了产酸抑氯同步化。
出处 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第6期1706-1713,共8页 中国有色金属学报(英文版)
基金 Project(2015016)supported by the Young Scholars Science Foundation of Lanzhou Jiaotong University,China Project(2015BAE04B01)supported by the National Science-technology Support Program of China Project(21466019)supported by the National Natural Science Foundation of China
关键词 COBALT ELECTRODEPOSITION anion exchange membrane cation exchange membrane membrane electrolytic reactor 电沉积 阴离子交换膜 阳离子交换膜 膜电解槽
  • 相关文献

参考文献26

  • 1SURZHKO O. Electrolytic deposition of a cobalt-lead alloy with magnetic properties [J]. Russian Journal of Applied Chemistry, 2013, 86(2): 182-185. 被引量:1
  • 2ZHANG Y, SHARMA P, MAKINO A. Effects of cobalt addition in nanocrystalline Fe83.3Si4B8P4Cu0.7 soft magnetic alloy [J]. IEEE Transactions on Magnetics, 2014, 50(4): 1-4. 被引量:1
  • 3FILIPPO B, PAOLO L, PASQUALE G. High-temperature fatigue strength of a copper-cobalt-beryllium alloy [J]. The Journal of Strain Analysis for Engineering Design, 2014, 49(4): 244-256. 被引量:1
  • 4KURLOV A S, REMPEL A A. Effect of cobalt powder morphology on the properties of WC-Co hard alloys [J]. Inorganic Materials, 2013, 49(9): 889-893. 被引量:1
  • 5GUSHKOVAL М О, VED М V, SAKHNENKO М D. Corrosion properties of cobalt-silver alloy electroplates [J]. Materials Science, 2013, 49(3): 292-297. 被引量:1
  • 6刘大星.国内外钴的生产消费与技术进展[J].有色冶炼,2000,29(5):4-9. 被引量:11
  • 7SHARMA I G, ALEX P, BIDAYE A C, SURI A K. Electrowinning of cobalt from sulphate solutions [J]. Hydrometallurgy, 2005, 80(1-2): 132-138. 被引量:1
  • 8DAS S C, SUBBAIAH T. Electrowinning of cobalt: I. Winning from pure cobalt sulphate bath [J]. Hydrometallurgy, 1984, 12: 317-333. 被引量:1
  • 9MISHRA K G, SINGH P, MUIR D M. Electrowinning of cobalt from sulphate solutions contaminated with organic impurities [J]. Hydrometallurgy, 2002, 65(2): 97-102. 被引量:1
  • 10KONGSTEIN O E, HAARBERG G M, THONSTAD J. Current efficiency and kinetics of cobalt electrodeposition in acid chloride solutions. Part I: The influence of current density, pH and temperature [J]. Journal of Applied Electrochemistry, 2007, 37: 669-674. 被引量:1

二级参考文献1

共引文献10

同被引文献46

引证文献6

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部