期刊文献+

基于遗传粒子群优化算法的调速器执行机构分段线性模型及参数辨识 被引量:8

Governor Actuator Piecewise Linear Model and Parameter Identification Based on Genetic Algorithm-Particle Swarm Optimization
下载PDF
导出
摘要 某些火电厂调速器执行机构调门呈非线性,基于调门整段全开全关曲线计算的执行机构开启和关闭时间常数结果不准确,改进了汽轮机调速器执行机构数学模型。该模型分别采用主、辅分段开启和关闭时间常数反映调门的非线性,其主开启和关闭时间常数通过全开全关曲线线性段计算得到,并结合调门小扰动实验辨识得到执行机构PID参数,再由全开全关实验确定调门分段点及辅开启和关闭时间常数。选用多个测试函数与其他基本智能算法比较,仿真验证了遗传粒子群优化算法(GA-PSO)的有效性;实际电厂算例验证了所建执行机构分段线性模型及参数的有效性。 Tone fully open and close tests in some thermal power plants are nonlinear, and opening and closing time constant calculation based on the whole opening and closing curves is inaccurate. An improved turbine governor actuator mathematical model is proposed, in which the main and auxiliary on/off time constants were used in segment to reflect the nonlinear characteristic of the turbine valve. The defined main on and off time constants were calculated through linear segments of the full opening and closing curves. Then actuator PID parameters were obtained through small disturbed position tests of the valve, and the valve segmentation point as well as auxiliary on and off time constants was determined by the fully opening and closing valve tests. Compared with other basic intelligence algorithms by selecting multiple test functions, the simulation results show the effectiveness of GA-PSO algorithm, Moreover, the actual power plant example verifies that the governor actuator piecewise linear model and its parameters are effective.
出处 《电工技术学报》 EI CSCD 北大核心 2016年第12期204-210,共7页 Transactions of China Electrotechnical Society
基金 国家自然科学基金资助项目(51307123 51347006)
关键词 遗传粒子群优化 调速器 执行机构 数学模型 参数辨识 Genetic algorithm-particle swarm optimization speed governor servo and actuator mathematical model parameter identification
  • 相关文献

参考文献13

二级参考文献146

共引文献249

同被引文献122

引证文献8

二级引证文献77

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部