期刊文献+

单通道盲源分离算法及其在工程机械振源分析中的应用 被引量:4

Single-channel Blind Source Separation and Its Application in Analyzing Vibration of Engineering Machinery
下载PDF
导出
摘要 研究一种新的单通道盲源分离方法,解决了传统盲源分离方法因传感器数量不足而无法有效分离源信号的问题,同时源信号幅值也得到了准确的恢复。首先利用集合经验模态分解方法将一维测量信号分解为具有不同尺度特征的本征模态函数,而后与原测量信号组成多个二维矩阵,通过稀疏分量算法得到各源信号的真实估计。利用仿真信号,与已有方法进行对比,验证了提出方法的有效性。将提出的方法应用在挖掘机动力源附近的振动分析中,成功分离出了多个振源信号。利用时频分析对源信号分别进行特征识别,并将分离结果用于振源的贡献度与声信号传递特性分析。得到各振源对于测试位置的贡献度排序,以及对于挖掘机噪声信号的传递规律,为挖掘机的减振降噪措施提供了可靠的依据。 A novel blind source separation method is proposed, which can separate sources with single channel measurement signal. And the amplitude of sources can be recovered accurately. First of all, one-dimensional measurement signal is decomposed into several intrinsic mode functions(IMF) by ensemble empirical mode decomposition, and combined with corresponding IMF into multiple two-dimensional matrixes. Then the sources can be separated by sparse component analysis method effectively. The effectiveness of proposed method is verified by simulated data. In practical application, the proposed method is utilized for separating sources by one-dimensional measurement signal recorded from an excavator. Then based on the separated sources, the contribution characteristics and transfer behaviors are analyzed. The analysis results can be utilized to guide the reduction of excavator vibration and noise.
作者 于刚 周以齐
出处 《机械工程学报》 EI CAS CSCD 北大核心 2016年第10期1-8,共8页 Journal of Mechanical Engineering
基金 国家科技支撑计划资助项目(2015BAF07B04)
关键词 单通道盲源分离 挖掘机 振源贡献量分析 传递特性分析 single-channel source separation excavator contribution estimation transfer analysis
  • 相关文献

参考文献13

  • 1屈梁生,何正嘉编著..机械故障诊断学[M].上海:上海科学技术出版社,1986:186.
  • 2GELLE G, COLAS M, DELAUNAY G Blind sources separation applied to rotating machines monitoring by acoustical and vibrations analysis[J]. Mechanical Systems and Signal Processing, 2000, 14(3): 427-442. 被引量:1
  • 3HYVAR1NEN A, OJA E. Independent component analysis : Algorithms and applications[J]. Neural Networks, 2000, 13(4): 411-430. 被引量:1
  • 4DU Xianfeng,LI Zhijun,BI Fengrong,ZHANG Junhong,WANG Xia,SHAO Kang.Source Separation of Diesel Engine Vibration Based on the Empirical Mode Decomposition and Independent Component Analysis[J].Chinese Journal of Mechanical Engineering,2012,25(3):557-563. 被引量:21
  • 5毋文峰,陈小虎,苏勋家.基于经验模式分解的单通道机械信号盲分离[J].机械工程学报,2011,47(4):12-16. 被引量:53
  • 6李强,付聪,江虹,彭先敏.融合经验模态分解与时频分析的单通道振动信号分离研究[J].振动与冲击,2013,32(5):122-126. 被引量:5
  • 7HUANG N E, SHEN Z, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society of London. Series A. Mathematical, Physical and Engineering Sciences, 1998, 454(1971). 903-995. 被引量:1
  • 8BOFILL P, ZIBULEVSKY M. Underdetermined blind source separation using sparse representations[J]. Signal Processing, 200I, 81(11): 2353-2362. [9] WU Z, HUANG N E. Ensemble empirical mode decomposition: A noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis, 2009, 1(1): 1-41. 被引量:1
  • 9WU Z, HUANG N E. Ensemble empirical mode decomposition: A noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis, 2009, 1(1): 1-41. 被引量:1
  • 10DONOHO D L. For most large underdetermined systems of linear equations the minimal/1-norm solution is also the sparsest solution[J]. Communications on Pure and Applied Mathematics, 2006, 59(6): 797-829. 被引量:1

二级参考文献69

共引文献88

同被引文献29

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部