期刊文献+

加速的TLD算法及其在多目标跟踪中的应用 被引量:6

Accelerated TLD Algorithm and its Application in Multiple Target Tracking
下载PDF
导出
摘要 TLD(Tracking-Learning-Detection)算法是近期受到广泛关注的一种长时间视觉跟踪算法.为提高该算法的运行速度,一种ATLD(Accelerated TLD)算法被提出,对原始TLD算法做了两方面改进:在检测模块引入基于灰色预测模型的目标位置估计和检测区域设置;运用基于NCC(Normalized Cross Correlation)距离的图像检索方法管理正负样本集.并在此基础上实现了多目标跟踪.通过实验比较了ATLD算法、原始TLD算法及两种近期改进的TLD算法.实验结果表明:ATLD算法在确保精度的前提下运行速度更快. Tracking-Learning-Detection(TLD) is a kind of long-term visual tracking algorithm which receiveds wide attention in recent years. In order to improve the running speed of this algorithm, a novel algorithm named Accelerated TLD(ATLD) is proposed in this paper. Two aspects of improvements were made in original TLD algorithm. The improvement includes as follows: using a grey prediction model in the detection module for estimating the location of the target and setting a detection area; applying an image indexing method based on normalized cross correlation(NCC) distance to manage the positive and negative sample set. And on this basis, the multiple targets tracking algorithm is realized. Through experiments, the ATLD algorithm, the original TLD algorithm and other two recent improved TLD algorithm are compared. The experimental results show that the ATLD algorithm runs faster on the premise of ensuring the accuracy.
作者 金哲 刘传才
出处 《计算机系统应用》 2016年第6期196-201,共6页 Computer Systems & Applications
基金 国家自然科学基金(61373063)
关键词 目标跟踪 TLD 目标位置估计 图像检索 target tracking tracking-learning-detection target location prediction image index
  • 相关文献

参考文献16

  • 1Yilmaz A, Javed O, Shah M. Object tracking: A survey. ACM Computing Surveys, 2006, 38(4): 131-145. 被引量:1
  • 2Lucas BD, Kanade T. An iterative image registration technique with an application to stereo vision. Menlo Park. Proc. of International Joint Conference on Artificial Intelligence. California: AAAI Press, 1981: 674-679. 被引量:1
  • 3Comaniciu D, Ramesh V, Meer P. Kernel-based object tracking. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2003, 25(5): 564-577. 被引量:1
  • 4Comaniciu D, Meer P. Mean shift analysis and applications. Proc. of the Seventh IEEE International Conference on Computer Vision. IEEE. 1999, 2. 1197-1203. 被引量:1
  • 5Ristic B, Arulampalam S, Gordon N. Beyond the Kalman Filter: Particle Filters for Tracking Applications. Norwood, MA: Artech House, 2004. 被引量:1
  • 6Kalal Z, Matas J, Mikolajczyk k. Online learning of robust object detectors during unstable tracking. Proc. of the IEEE On-line Learning for Computer Vision Workshop. New York: IEEE Press. 2009. 1417-1424. 被引量:1
  • 7Kalal Z, Mikolajczyk K, Matas J. Forward-backward error: automatic detection of tracking failures. Proc. of International Conference on Pattern Recognition. New York: IEEE Press. 2010. 23-26. 被引量:1
  • 8Kalal Z, Matas J, Mikolajczyk k. P-N learning: Bootstrapping binary classifiers by structural constraints. Proc. of IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press. 2010. 49-56. 被引量:1
  • 9Kalal Z, Mikolajczyk K, Matas J. Tracking-learning- detection. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2012, 34(7): 1409-1422. 被引量:1
  • 10Gemignani G, Choi W, Ferone A, et al. A Bayesian approach to tracking learning detection. Image Analysis and Processing-ICIAP 2013. Springer Berlin Heidelberg. 2013. 803-812. 被引量:1

同被引文献22

引证文献6

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部