期刊文献+

低分辨率条件下基于TLD的鲁棒车辆跟踪算法 被引量:1

THE ROBUST VEHICLE TRACKING ALGORITHM BASED ON TLD IN LOW-RESOLUTION CONDITION
下载PDF
导出
摘要 TLD(Tracking-Learning-Detection)算法是一种广泛应用的车辆跟踪算法,但其在低分辨率视频下易出现跟踪漂移或者丢失等问题,为此,对传统的TLD算法进行改进。针对TLD算法中金字塔光流跟踪器易受光照影响,出现跟踪失败问题,采用具有较强跟踪性能的CT跟踪器,并研究跟踪失败自检测策略,以提高算法的跟踪性能。此外,通过对2bit BP-HOG特征(形状和纹理特征)描述算子进行多特征融合,有效克服了低分辨率环境下纹理特征提取不准确造成检测器准确度低的问题。实验表明,改进算法在鲁棒性和跟踪速率方面都有所提高。 TLD (Tracking-Learning-Detection) is a widely adopted algorithm in the research topics of vehicle tracking. However, the traditional TLD is easily to lose targets and locate the wrong targets in a low-resolution video, and that is why the traditional TLD algorithm should be improved. As the pyramid optical flow tracker in traditional TLD fails to work well in poor illumination scenes, a novel vehicle tracking algorithm by applying the CT( Compressive Tracking) into the traditional TLD algorithm is proposed to obtain the vehicle location fast when the targets are lost. Besides,with the multi-features fusion of the 2bitBP-HOG feature descriptor, which is composed of shape and texture information in tracking phase, the improved algorithm obtains higher-performance tracking results than those of traditional TLD in low-resolution condition, not only tracking precision but also time complexity. Experiment results validate the improvement of the proposed algorithm, both on robustness and tracking rates.
出处 《计算机应用与软件》 CSCD 2016年第12期264-269,共6页 Computer Applications and Software
基金 广西高校图像图形智能处理重点实验室立项课题(GIIP201403) 广西信息科学实验中心2014年度一般基金项目 广西高校云计算与复杂系统重点实验室立项课题(15210) 广西科技计划项目(桂科攻1598018-6)
关键词 TLD CT跟踪器 2bitBP-HOG特征 低分辨率 车辆跟踪 TLD CT tracker 2bitBP-HOG feature Low-resolution Vehicle tracking
  • 相关文献

参考文献1

二级参考文献11

  • 1乔红波,夏斌,马新明,程登发,周益林.冬小麦病虫害的高光谱识别方法研究[J].麦类作物学报,2010,30(4):770-774. 被引量:13
  • 2Navneet Dalal,Bill Triggs.Histograms of Oriented Gradients for Human Detection[C]//Computer Vision and Pattern Recognition(CVPR),2005. 被引量:1
  • 3Dai Yaping,Liu Yan,Tian Yanbing.Feature-level image sequence fusion based on histograms of Oriented Gradients[C]//Computer Science and Information Technology(ICCSIT),2010. 被引量:1
  • 4Feifei L,Perona P.A Bayesian Hierarchical Model for Learning Natural Scene Categories[C]//Proc.of IEEE Computer Vision and Pattern Recognition,2005:524-531. 被引量:1
  • 5Lazebnik S,Schmid C,Ponce J.Beyond Bags of Features:Spatial Pyramid Matching for Recognizing Natural Scene Catgories[C]//Proc.IEEE Conf.Computer Vision and Pattern Recognition,2006:133-157. 被引量:1
  • 6Koen E A,van de Sande,Theo Gevers,et al.Evaluating Color Descriptors for Object and Scene Recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2010,32(9). 被引量:1
  • 7Jégou H,Douze M,Schmid C.Packing bag-of-features[C]//IEEE International Conference on Computer Vision(ICCV),2009. 被引量:1
  • 8Wang Changhu,Li Zhiwei,Zhang Liqing Q,et al.Spatial-bag-of-features[J].Computer Vision and Pattern Recognition,2010. 被引量:1
  • 9张恒,陈丽娟,张岩.模糊植物病虫害图像的检测[J].计算机仿真,2012,29(1):199-201. 被引量:4
  • 10廉迎战,吴中梅,余宇航.一种基于图像的农作物病虫害诊断专家系统研究[J].现代计算机,2012,18(12):64-67. 被引量:1

共引文献8

同被引文献8

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部