期刊文献+

高阶SVD和全变差正则的乘性噪声去除模型 被引量:6

Higherorder singular value decomposition-and total variation-regularized multiplicative noise removal model
下载PDF
导出
摘要 光滑性、稀疏性和自相似性先验作为自然图像的重要特性被广泛应用于图像去噪.根据高阶奇异值分解和全变差正则的互补性,提出了一种能够同时利用光滑性、稀疏性和自相似性先验的乘性噪声去除新方法.该方法首先采用高阶奇异值分解方法对对数变换后图像中的相似块组进行去噪;然后结合考虑光滑性先验的全变差约束对结果进行迭代优化.实验结果表明,该方法在有效去除乘性噪声的同时,可以更好地保留图像的边缘和纹理区域的细节信息. Smoothness, sparsity and self-similarity are the priors widely used in image denoising due to their importance in representing natural images. Motivated by the collaborative roles of higher order singular value decomposition and total variation regularization, a new approach that can simultaneously capture the above priors is proposed in this paper for removing the multiplicative noises. By taking advantages of local adaptiveness, sparsity and self-similarity realized by higher order singular value decomposition, the proposed approach starts with similar-patch-group-wise adaptive denoising on the log- transformed image, followed by the iterative optimization implemented by the total variation constraint which considers the prior of smoothness. Experiments demonstrate the advantages of the proposed approach in removing multiplicative noise and preserving the details near the edges and in the texture area.
出处 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2016年第3期78-84,共7页 Journal of Xidian University
基金 国家自然科学基金资助项目(61271294 61472303 61362029 61379030) 中央高校基本科研业务费专项资金资助项目(NSIY21)
关键词 高阶奇异值分解 乘性噪声 全变差 非局部滤波 图像去噪 higher order singular value decomposition multiplicative noise total variation nonlocal filter image denoising
  • 相关文献

参考文献23

二级参考文献69

  • 1BUADES A,COLL B,MOREL J M.A nonLocal algorithm for image denoising[C].Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition,2005,2:60-65. 被引量:1
  • 2DABOV K,FOI A,KATKOVNIK V,et al.Image denoising by sparse 3D transform-domain collaborative filtering[J].IEEE Transactions on Image Processing,2007,16(8):2080-2095. 被引量:1
  • 3AHARON M,ELAD M,BRUCKSTEIN A M.The K-SVD:an algorithm for designing of overcomplete dictionaries for sparse representation[J].IEEE Transactions on Signal Processing,2006,54(11):4311-4322. 被引量:1
  • 4LEE J S.Speckle suppression and analysis for synthetic aperture radar image[J].Optical Engineering,1986,25(5):636-643. 被引量:1
  • 5KUAN D,SAWCHUK A,STRAND T.Adaptive restoration of image with speckle[J].IEEE Transactions on Acoustics Speech and Signal Processing,1987,35(3):373-383. 被引量:1
  • 6FROST V S,STILES J A,SHANMUGAN K S.A mode for radar image and its application to adaptive digital filtering of multiplicative noise[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1982,4(2):157-165. 被引量:1
  • 7DONOHO D L,JOHNSTONE I M.Ideal spadal adaptation by wavelet shrinkage[J].Biometrika,1994,81(3):425-455. 被引量:1
  • 8DONOHO D L.Denoising by soft-thresholding[J].IEEE Transaction on Information Theory,1995,41(3):613-627. 被引量:1
  • 9SHI J,OSHER S.A nonlinear inverse scale space method for a convex multiplicative noise model[J].SIAM Journal on Imaging Sciences,2008,1(3):294–321. 被引量:1
  • 10AUBERT G,AUJOL J F.A variational approach to removing multiplicative noise[J].SIAM Journal on Applied Mathematics,2008,68(4):925–946. 被引量:1

共引文献30

同被引文献29

引证文献6

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部