期刊文献+

结合自适应核回归和全变差的乘性噪声去除

Multiplicative noise removal via adaptive kernel regression and total variation
下载PDF
导出
摘要 为了更好地去除图像中的乘性噪声,提出一个新的三阶段乘性噪声去除算法。第一阶段在图像的对数域用自适应的掌舵核回归(SKR)对图像进行去噪处理;第二阶段用全变差(TV)方法对第一阶段处理的结果进行补充处理;第三阶段通过指数变换和误差纠偏,把图像变回到真实的图像域。新方法具有掌舵核回归与全变差两种方法的优点,实验结果证明了其去除乘性噪声的有效性。 To remove the muhiplicative noise better, a new three-stage method for muhiplicative noise removal was proposed. In the first stage, log-image was processed by adaptive Steer Kernel Regression ( SKR). Then in the second stage, the Total Variation (TV) regularization method was used to amend the image obtained. At last, via an exponential function and bias correction, the result was transformed back from the log-domain to the real one. The new method combined the advantages of steer kernel regression and total variation method. The experimental results show that the new method is more effective to filter out multiplicative noise.
出处 《计算机应用》 CSCD 北大核心 2013年第9期2592-2594,2598,共4页 journal of Computer Applications
基金 国家自然科学基金资助项目(61271294 61201431)
关键词 乘性噪声 核回归 全变差 自适应 去噪 multiplicative noise kernel regression Total Variation (TV) adaptfve denoise
  • 相关文献

参考文献15

  • 1LEE J S. Digital image enhancement and noise filtering byuse of lo- cal statistics[ J]. IEEE Transactions on Pattern Analysis and Ma- chine Intelligence, 1980, 2(2): 165 - 168. 被引量:1
  • 2ACHIM A , BEZERIANOS A , TSAKALIDES P . Novel Bayesian muhiscale method for speckle removal in medical ultrasound images [J]. IEEE Transactions on Medical Imaging, 2001, 20(8):772- 783. 被引量:1
  • 3ACHIM A, TSAKALIDES P, BEZERIANOS A. SAR image denoising via Bayesian wavelet shringkage based on heavy-tailed modeling [J]. IEEE Transactions on Geoscience and Remote Sens- ing, 2003,41(8): 1773 -1784. 被引量:1
  • 4RUDIN L, LIONS P, OSHER S. Muhiplieative denoising and de- blurring: theory and algorithms[ C]// OSHER S, PARAGIOS N. Geometric Level Sets in Imaging Vision and Graphics. Berlin: Springer, 2003:103 - 120. 被引量:1
  • 5SHI J, OSHER S. A nonlinear inverse scale space method for a con- vex muhiplicative noise model [ J]. SIAM Journal on Imaging Sci- ences, 2008, 1 (3) : 294 - 321. 被引量:1
  • 6AUBET G, AUJOL J F. A variational approach to removing multi- plicative noise [J]. SIAM Journal on Applied Mathematics, 2008, 68(4) : 925 -946. 被引量:1
  • 7STEIDL G, TEUBER T. Removing multiplicative noise by Douglas- Rachford splitting methods [ J]. Journal of Mathematical Imaging and Vision, 2010, 36(2) : 168 - 184. 被引量:1
  • 8BIOUCAS-DIAS J, FIGUEIREDO M. Muhiplicative noise removal using variable splitting and constrained optimization [J]. IEEE Transactions on Image Proeessing, 2010, 19(7):1720 -1730. 被引量:1
  • 9HUANG Y M, NG M K, WEN Y W. A new total variation method for multiplicative noise removal [ J]. SIAM Journal on Imaging Sci- ences, 2009, 2(1) : 20 - 40. 被引量:1
  • 10LI F, NG M K, SHEN C. Multiplicative noise removal with spa- tially varying regularization parameters [ J]. SIAM Journal on Ima- ging Sciences, 2010, 3(1) : 1 - 20. 被引量:1

二级参考文献17

  • 1BUADES A,COLL B,MOREL J M.A nonLocal algorithm for image denoising[C].Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition,2005,2:60-65. 被引量:1
  • 2DABOV K,FOI A,KATKOVNIK V,et al.Image denoising by sparse 3D transform-domain collaborative filtering[J].IEEE Transactions on Image Processing,2007,16(8):2080-2095. 被引量:1
  • 3AHARON M,ELAD M,BRUCKSTEIN A M.The K-SVD:an algorithm for designing of overcomplete dictionaries for sparse representation[J].IEEE Transactions on Signal Processing,2006,54(11):4311-4322. 被引量:1
  • 4LEE J S.Speckle suppression and analysis for synthetic aperture radar image[J].Optical Engineering,1986,25(5):636-643. 被引量:1
  • 5KUAN D,SAWCHUK A,STRAND T.Adaptive restoration of image with speckle[J].IEEE Transactions on Acoustics Speech and Signal Processing,1987,35(3):373-383. 被引量:1
  • 6FROST V S,STILES J A,SHANMUGAN K S.A mode for radar image and its application to adaptive digital filtering of multiplicative noise[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1982,4(2):157-165. 被引量:1
  • 7DONOHO D L,JOHNSTONE I M.Ideal spadal adaptation by wavelet shrinkage[J].Biometrika,1994,81(3):425-455. 被引量:1
  • 8DONOHO D L.Denoising by soft-thresholding[J].IEEE Transaction on Information Theory,1995,41(3):613-627. 被引量:1
  • 9SHI J,OSHER S.A nonlinear inverse scale space method for a convex multiplicative noise model[J].SIAM Journal on Imaging Sciences,2008,1(3):294–321. 被引量:1
  • 10AUBERT G,AUJOL J F.A variational approach to removing multiplicative noise[J].SIAM Journal on Applied Mathematics,2008,68(4):925–946. 被引量:1

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部