期刊文献+

非凸泛函的图像分解

Image decomposition using the non-convex functional
下载PDF
导出
摘要 提出了一种新的基于非凸泛函的图像分解模型.与经典的用Banach范数作为忠诚项的凸泛函模型相比,本文用残差图像的平方的积分除以它的梯度作为忠诚项.这种新的忠诚项对于纹理图像具有非常小的值,然而,对于几何图像有非常大的值,所以它很适合图像分解.应用梯度下降法求非凸泛函的极小值,这导致将一个新的非线性二阶偏微分方程演化到稳定的状态.与经典的总变差最小模型(TV)和四阶偏微分方程模型(OSV)相比,提出的模型可以更好地保持图像的边缘,所以纹理部分有更少的卡通信息.数值实验也证明了本文的模型比标准的TV和OSV模型具有更好的图像分解效果. This paper proposes a new model for image decomposition by non-convex functional minimization. Instead of using the Banach norm as the fidelity term, we use the integral of the square of residual component divided by its gradient as the fidelity term. This non-convex fidelity term has a very low value for the texture image and a high value for the geometric image, so it is appropriate for image decomposition. The gradient descent procedure is used to solve the proposed minimization problem, which leads to evolving a new nonlinear second-order partial differential equation (PDE) to a steady state. Compared with the total variation minimization(TV) model and the fourth-order PDE(OSV) model, the proposed nonlinear second-order PDE maintains many more sharp edges, so the texture part has less cartoon information. Experimental results also demonstrate that our model performs better than the standard TV and OSV models in image decomposition.
作者 白键 冯象初
出处 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2013年第2期67-71,137,共6页 Journal of Xidian University
基金 博士点新教师基金资助项目(20100203120010) 国家自然科学基金资助项目(61105011)
关键词 图像分解 总变差最小 泛函极小 非凸泛函 image decomposition total variation minimization functional minimization non-convex functional
  • 相关文献

参考文献12

  • 1Rudin L, Osher S, Fatemi E. Nonlinear Total Variation Based Noise Removal Algorithms [J]. Physiea D, 1992, 60(1 4): 259-268. 被引量:1
  • 2GillersJ, Meyer Y. Properties of BV-G Structures+Textures Decomposition Models Application to Road Detection in Satellite Images [J]. IEEE Trans on Image Processing, 2010, 19(11) : 2793-2800. 被引量:1
  • 3Meyer Y. Oscillating Patterns in Image Processing and Nonlinear Evolution Equations [R]. Boston: American Mathematical Society, 2001. 被引量:1
  • 4Vese L, Osher S. Modeling Textures with Total Variation Minimization and Oscillating Patterns in Image Processing [J]. Journal of Scientific Computing, 2003, 19(1/3) : 553-572. 被引量:1
  • 5Osher S, SoleA, Vese A. Image Decomposition and Restoration Using Total Variation Minimization and the H^-1 Norm [J]. Multiscale Model and Simulation, 2003, 1(3): 349-370. 被引量:1
  • 6BAI Jian FENG Xiangchu.Image Denoising and Decomposition Using Non-convex Functional[J].Chinese Journal of Electronics,2012,21(1):102-106. 被引量:9
  • 7Bai J, Feng Xiangchu. A Novel Nonlinear Parabolic-Hyperbolic Equation for Image Decomposition [C]//2011 IEEE 3rd International Conference on Signal Processing Systems. Beijing: IEEE, 2011: 41-45. 被引量:1
  • 8Aujol J, Chambolle A. Dual Norms and Image Decomposition Models [J] . International Journal of Computer Vision, 2005, 63(1): 85-104,. 被引量:1
  • 9Budeas A, Le T, Morel J, et al. Fast Cartoon+Texture Image Filters [J]. IEEE Trans on Image Processing, 2010, 19 (8) : 1978-1986. 被引量:1
  • 10Scherzer O, Grasmair M, Grossauer H, et al. Variational Methods in Imaging [M]. New York: Springer-Verlag, 2009. 被引量:1

二级参考文献32

  • 1李敏,冯象初.基于总变分和各向异性扩散方程的图像恢复模型[J].西安电子科技大学学报,2006,33(5):759-762. 被引量:10
  • 2BUADES A,COLL B,MOREL J M.A nonLocal algorithm for image denoising[C].Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition,2005,2:60-65. 被引量:1
  • 3DABOV K,FOI A,KATKOVNIK V,et al.Image denoising by sparse 3D transform-domain collaborative filtering[J].IEEE Transactions on Image Processing,2007,16(8):2080-2095. 被引量:1
  • 4AHARON M,ELAD M,BRUCKSTEIN A M.The K-SVD:an algorithm for designing of overcomplete dictionaries for sparse representation[J].IEEE Transactions on Signal Processing,2006,54(11):4311-4322. 被引量:1
  • 5LEE J S.Speckle suppression and analysis for synthetic aperture radar image[J].Optical Engineering,1986,25(5):636-643. 被引量:1
  • 6KUAN D,SAWCHUK A,STRAND T.Adaptive restoration of image with speckle[J].IEEE Transactions on Acoustics Speech and Signal Processing,1987,35(3):373-383. 被引量:1
  • 7FROST V S,STILES J A,SHANMUGAN K S.A mode for radar image and its application to adaptive digital filtering of multiplicative noise[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1982,4(2):157-165. 被引量:1
  • 8DONOHO D L,JOHNSTONE I M.Ideal spadal adaptation by wavelet shrinkage[J].Biometrika,1994,81(3):425-455. 被引量:1
  • 9DONOHO D L.Denoising by soft-thresholding[J].IEEE Transaction on Information Theory,1995,41(3):613-627. 被引量:1
  • 10SHI J,OSHER S.A nonlinear inverse scale space method for a convex multiplicative noise model[J].SIAM Journal on Imaging Sciences,2008,1(3):294–321. 被引量:1

共引文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部