期刊文献+

基于变分的图像恢复算法及收敛性 被引量:2

ALGORITHM FOR IMAGE RESTORATION BASED ON VARIATION AND ITS CONVERGENCE
下载PDF
导出
摘要 提出了一种保持边缘的正则化图像恢复算法 ,该方法可有效地用于求解线性逆问题的非凸优化过程 .通过对正则化函数及相应泛函性质的理论分析 ,得出了使泛函达到最小的正则化函数表达式 ;引入一个与原非凸泛函相应的二元泛函 ,将非凸优化问题转化为本质上的凸优化问题 ,采用松弛迭代算法获得非凸优化问题的局部极小解 ;证明了所提出的算法是全局收敛的 . A new algorithm for edge-preserving image restoration is presented in this paper. The variation based method can be effectively used in the process of non-convex optimization for solving the linear inverse problem. By analyzing the properties of regularization functions and the corresponding energy functional, an optimal expression of regularization function and a new energy functional with binary variables are introduced. Thus the non-convex optimization problem is transformed into a sequence of essentially convex one. The local optimal solution of no-convex optimization problem is then obtained by using a relaxation iterative algorithm. Such algorithm is shown to be globally convergent. Finally, the proposed method is tested on real and synthetic images.
出处 《自动化学报》 EI CSCD 北大核心 2002年第5期673-680,共8页 Acta Automatica Sinica
基金 国家创新研究群体科学基金 (60 0 2 43 0 1 ) 国家自然科学基金 (60 1 75 0 0 6)资助
关键词 变分 图像恢复算法 收敛性 正则化 变分 全局收敛 图像信息处理 Algorithms Convergence of numerical methods Optimization
  • 相关文献

参考文献13

  • 1[1]Andrews H C, Hunt B R. Digital Image Restoration. Englewood Cliffs, NJ: Prentice Hall, 1977 被引量:1
  • 2[2]Yuille A, Poggio T. Scaling theorems for zero-crossing. IEEE Trans. Pattern Anal. & Machine Intell., 1986,8(1):15~25 被引量:1
  • 3[3]Charbonnier P, Blance-Feraud L, Aubert G, Barlaud M. Deterministic edge-preserving regularization in computed imaging. IEEE Trans. Image Processing, 1997, 6(2):298~311 被引量:1
  • 4[4]Meyer R R. Sufficient conditions for the convergence of monotonic mathematical programming algorithms. J. Comput. Syst. Sci., 1976,12(1):108~121 被引量:1
  • 5[5]Black M J, Rangarajan A. The outlier process: unifying line processes and robust statistics. In: Proc. IEEE Conf. Computer Vision and Pattern Recognition. Seattle, WA, 1994. 15~22 被引量:1
  • 6[6]Luenberger D G. Introduction to Linear and Nonlinear Programming. Addison-Wesley Publishing Company, 1973 被引量:1
  • 7[7]Luenberger D G. Linear and Nonlinear Programming. Reading, MA: Addison-Wesley, 1984 被引量:1
  • 8[8]You Y L et al. Blind image restoration by anisotropic regularization. IEEE Trans. Image Processing, 1999, 8(3):398~407 被引量:1
  • 9[9]Vogel C R, Oman M E. Iterative methods for total variation denoising. SIAM Journal on Scientific Computing, 1996,17:227~238 被引量:1
  • 10[10]Mumford D, Shah J. Optimal approximation by piecewise smooth functions and associated variational problems. Comm. Pure Appl. Math., 1989, 42:577~685 被引量:1

同被引文献28

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部