期刊文献+

基于Wi-Fi设备的区域人员密度检测概率研究 被引量:3

Detection probability research of regional staff density based on Wi-Fi devices
下载PDF
导出
摘要 为了弥补某一区域人员密度传统检测方法的不足,同时更好地从该区域开启无线保真(Wi-Fi)的手机终端发送的嗅探(PR)帧中获取该区域的人员密度信息,提出一种基于Wi-Fi设备的区域人员密度检测概率模型.首先,通过实验获取常见手机品牌发送嗅探帧的平均时间间隔数据,为概率模型中参数的设置提供指导;其次,根据IEEE 802.11协议及Wi-Fi信道特点,建立Wi-Fi检测器的数学模型;最后,结合具体的环境,选取合理的参数,对检测器的检测概率进行仿真分析.理论分析和仿真结果表明,所建立的数学模型能较好地体现检测器对人员密度的检测情况. To overcome the weakness of traditional detection approaches for regional staff density, and meanwhile obtain the regional staff density information better from Probe Request( PR) frame sended from mobile phones with the enabled Wireless-Fidelity( Wi-Fi), a detection probability model of regional staff density based on Wi-Fi devices was proposed.Firstly, the average PR frame time intervals of common mobile phones were obtained by experiment, which could provide a guidance for setting some parameters of probability model. Secondly, according to the IEEE 802. 11 standard and Wi-Fi channel attributes, a Wi-Fi detector ’s mathematical model was built. Finally, reasonable values were assigned to these parameters on the basis of specific environment, and the detection probability of detector was simulated. The theoretical analysis and simulation results show that the proposed mathematical model can reflect the detection situations for staff density.
出处 《计算机应用》 CSCD 北大核心 2016年第6期1751-1756,共6页 journal of Computer Applications
关键词 人员密度 WI-FI 检测概率 嗅探帧 IEEE 802.11 staff density Wi-Fi detection probability Probe Request(PR) frame IEEE 802.11
  • 相关文献

参考文献19

  • 1盛攀龙..基于红外图像的人流检测技术的研究[D].上海交通大学,2008:
  • 2吴小林.红外光控人流量统计系统[J].现代电子技术,2013,36(20):124-126. 被引量:6
  • 3吴松,雒江涛,周云峰,林举厅,舒忠玲.基于移动网络信令数据的实时人流量统计方法[J].计算机应用研究,2014,31(3):776-779. 被引量:13
  • 4胡斌杰,詹益旺.基于手机信令的道路交通流量状态识别及预测[J].移动通信,2015,39(10):16-21. 被引量:15
  • 5PLAUE M, CHEN M, B)RWOLFF G, et al. Trajectory extractionand density analysis of intersecting pedestrian flows from video re- cordings [ C]/! PIA'I 1 : Proceedings of the 2011 ISPRS Conference on Photogrammetric Image Analysis, LNCS 6952. Berlin: Springer- Verlag, 2011:285-296. 被引量:1
  • 6MEHRAN R, OYAMA A, SHAH M. Abnormal crowd behavior de- tection using social force model [ C ]// Proceedings of the 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2009:935-942. 被引量:1
  • 7FREUDIGER J. How talkative is your mobile device?: an experi- mental study of Wi-Fi probe requests [ C]//Proceedings of the 8th ACM Conference on Security & Privacy in Wireless and Mobile Net- works. New York: ACM, 2015: Article No. 8. 被引量:1
  • 8BARBERA M V, EPASTO A, MEI A, et al. Signals from the crowd: uncovering social relationships through smartphone probes [ C]//Pro- ceedings of the 2013 Conference on Internet Measurement. New York: ACM, 2013:265-276. 被引量:1
  • 9MUSA A B M, ERIKSSON J. Tracking unmodified smartphones u- sing Wi-Fi monitors [ C]//Proceedings of the 10th ACM Conference on Embedded Network Sensor Systems. New York: ACM, 2012: 281 - 294. 被引量:1
  • 10CUNCHE M, KAAFAR M-A, BORELI R. Linking wireless de- vices using information contained in Wi-Fi probe requests [ J ]. Pervasive and Mobile Computing, 2014, 11:56-69. 被引量:1

二级参考文献20

共引文献30

同被引文献28

引证文献3

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部