期刊文献+

基于稀疏度自适应化的DEM压缩采样与重构方法 被引量:2

DEM compressive sampling and reconstruction based on sparsity adaptive method
下载PDF
导出
摘要 地形数据量的日益增长迫切地需要高效的存储和传输策略。提出了一种基于稀疏度自适应化的DEM压缩采样与重构方法,并给出了方法具体的实现及详细流程。该方法首先利用小波变换对原始DEM进行稀疏处理,然后利用QR分解后的随机高斯矩阵对稀疏处理结果进行降维观测,实现DEM的压缩。最后针对CoSaMP算法必须提供稀疏度和重构时间长的缺点提出一种稀疏度自适应化的改进算法,利用改进的CoSaMP算法进行重构和小波反变换等步骤获得DEM的重构结果。在保证相似重构精度的前提下,提出的改进的CoSaMP算法与传统的CoSaMP算法相比,在实现稀疏度自适应化的同时有效地提高了收敛速度。仿真实验结果表明与JPEG2000方法相比,提出的方法实现了更高压缩比的数据压缩和高峰值信噪比的数据重构。 The ever increasing volume of terrain data require efficient strategies in storage and transmission. In this paper,a new DEM compressive sampling and reconstruction based on sparsity adaptive method is proposed. The detailed step and flow chart of the method are shown. In the method, the curvelet transform can be utilized to make DEM sparse firstly,and then the random Gaussian matrix after approximate orthogonal-matrix and Right-matrix(QR)decomposition can be employed to complete the low-dimension measurement and finish compress the DEM. Furthermore, the modified CoSaMP algorithm, inverse curvelet transform and so on can be used to achieve the final reconstruction. In this paper, on the condition of the same reconstruction precision, the modified CoSaMP algorithm conducts blind recovery without priori information of sparsity and the convergence speed is enhanced compared with the original CoSaMP algorithm. Experimental results indicate that compared with the JPEG2000 the proposed method obtains high compression ratio and high reconstruction accuracy.
出处 《计算机工程与应用》 CSCD 北大核心 2016年第11期190-195,共6页 Computer Engineering and Applications
关键词 改进的CoSaMP算法 数字高程模型(DEM) 压缩感知 小波变换 modified CoSaMP algorithm Digital Elevation Model(DEM) compressed sensing wavelet transform
  • 相关文献

参考文献15

  • 1Le Hoang Son N D L,Van Huong T,Dien N H.A lossless effective method for the digital elevation model compression for fast retrieval problem[J].International Journal of Computer Science and Network Security(IJCSNS),2011,11(6):35-44. 被引量:1
  • 2郭浩然,庞建民.基于提升小波的地形数据混合熵编码压缩与实时渲染[J].电子与信息学报,2012,34(12):3013-3020. 被引量:2
  • 3赵鸿森,冯琦,周德云.机载DEM特征点提取及压缩方法研究[J].电光与控制,2012,19(1):25-28. 被引量:2
  • 4Candès E J.Compressive sampling[C]//Proceedings of the International Congress of Mathematicians,2006,3:1433-1452. 被引量:1
  • 5Candes E,Romberg J,Tao T.Stable signal cecovery from incomplete and inaccurate measurements[J].Communications on Pure and Applied Mathematics,2006,59(8):1207-1223. 被引量:1
  • 6Donoho D L.Compressed sensing[J].IEEE Transactions on Information Theory,2006,52(4):1289-1306. 被引量:1
  • 7Haupt J,Bajwa W U,Rabbat M,et al.Compressed sensing for networked data[J].IEEE Signal Processing Magazine,2008,25(2):92-101. 被引量:1
  • 8Aguilera E,Nannini M,Reigber A.Wavelet-based compressed sensing for SAR tomography of forested areas[C]//EUSAR,2012:259-262. 被引量:1
  • 9Lustig M,Donoho D L,Santos J M,et al.Compressed sensing MRI[J].IEEE Signal Processing Magazine,2008:72-82. 被引量:1
  • 10Kutyniok G.Theory and applications of compressed sensing[J].GAMM Mitteilungen,2013,36(1):79-101. 被引量:1

二级参考文献44

  • 1罗永,成礼智,陈波,吴翊.数字高程模型数据小波压缩算法[J].国防科技大学学报,2005,27(2):118-123. 被引量:11
  • 2D L Donoho.Compressed sensing[J].IEEE Trans Info Theory,2006,52(4):1289-1306. 被引量:1
  • 3E J Candès,J Romberg,T Tao.Robust uncertainty principles:Exact signal reconstruction from highly incomplete frequency information[J].IEEE Trans Info Theory,2006,52(2):489-509. 被引量:1
  • 4E J Candès,T Tao.Near-optimal signal recovery from random projections:Universal encoding strategies[J].IEEE Trans Info Theory,2006,52(12):5406-5425. 被引量:1
  • 5E J Candès,T Tao.Decoding by linear programming[J].IEEE Trans Info Theory,2005,51(12):4203-4215. 被引量:1
  • 6S S Chen,D L Donoho,M A.Saunders.Atomic decomposition by basis pursuit[J].SIAM Rev,2001,43(1):129-159. 被引量:1
  • 7S Mallat,Z Zhang.Matching pursuits with time-frequency dictionaries[J].IEEE Trans Signal Process,1993,41(12):3397-3415. 被引量:1
  • 8J A Tropp.Greed is good:Algorithmic results for sparse approximation[J].IEEE Trans Info Theory,2004,50(10):2231-2242. 被引量:1
  • 9J A Tropp,A C Gilbert.Signal recovery from random measurements via orthogonal matching pursuit[J].IEEE Trans Info Theory,2007,53(12):4655-4666. 被引量:1
  • 10D L Donoho,Y Tsaig,I Drori,etc.Sparse solution of underdetermined linear equations by stagewise Orthogonal Matching Pursuit .2007,http://www-stat.stanford.edu/-donoho/Reports/2006/StOMP-20060403.pdf. 被引量:1

共引文献115

同被引文献16

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部