期刊文献+

新的基于稀疏表示单张彩色超分辨率算法 被引量:7

New approach for super-resolution from a single color image based on sparse coding
下载PDF
导出
摘要 传统的基于学习的超分辨率算法普遍采用样本库来训练字典对,训练时间长且对样本库依赖较大。针对传统算法的不足,提出一种新的单张彩色图像超分辨率算法。该方法基于稀疏编码超分辨率模型,利用图像自相似性和冗余特性,并结合图像金字塔结构,采用低分辨率图像本身来训练高、低分辨率图像块的字典对。同时,针对彩色图像,该算法采用一种基于稀疏表示的彩色图像存储技术,将彩色图像的三通道值组合成一个向量进行图像稀疏处理,以更好地维持原始图像细节信息。实验结果表明,与传统的超分辨率算法相比,该算法不但有更好的视觉效果和更高的峰值信噪比(PSNR),而且计算速度快。 Traditional learning-based super-resolution algorithms generally adopt training images for learning dictionary pairs, they are time-consuming, and the results strongly depend on the training images. To address these problems, a new super-resolution approach from a single color image was proposed based on sparse coding model. According to image self- similarity and redundancy features, this algorithm utilized low-resolution image itself for training dictionary pairs, combined with image pyramid structure. Meanwhile, in view of color images, the sparse representation based color image storage technology was used, which concatenated the values of three channels to a single vector and directly represented them sparsely. The experimental results illustrate that the proposed method not only can generate high-resolution images with better visual effects and higher Peak Signal-to-Noise Ratio (PSNR) but also has less computation time.
出处 《计算机应用》 CSCD 北大核心 2013年第2期472-475,共4页 journal of Computer Applications
基金 国家自然科学基金资助项目(61173182 61179071) 四川省国际科技合作与交流研究计划项目(2012HH0004) 四川省应用基础项目(2011JY0124)
关键词 基于学习的超分辨率 稀疏编码 字典对 图像金字塔 彩色图像存储 learning-based super-resolution sparse coding dictionary pair image pyramid color image storage
  • 相关文献

参考文献15

  • 1KER S,KANADE T. Limits on super-resolution and how to break them[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,(09):1167-1183. 被引量:1
  • 2PARK S C,PARK M K,KANG M G. Super-resolution image construction:a technical overview[J].IEEE Signal Processing Magazine,2003,(03):21-36. 被引量:1
  • 3曾强宇,何小海,陈为龙.基于改进量化约束集的压缩视频超分辨率重建算法[J].计算机应用,2011,31(1):151-153. 被引量:1
  • 4KEYS R G. Cubic convolution interpolation for digital image processing[J].IEEE Transactions on Acoustics Speech and Signal Processng,1981,(06):1153-1160. 被引量:1
  • 5MARQUINA A,OSHER S J. Image super-resolution by TV-regularization and Bregman iteration[J].Journal of Scientific Computing,2008,(03):367-382.doi:10.1007/s10915-008-9214-8. 被引量:1
  • 6DAIS Y,HAN M,XU W. Soft edge smoothness prior for alpha channel super resolution[A].Washington,DC:IEEE Computer Society,2007.1-8. 被引量:1
  • 7SUN J,XU Z B,SHUM H-Y. Image super-resolution using gradient profile prior[A].Washington,DC:IEEE Computer Society,2008.1-8. 被引量:1
  • 8FREEMAN W T,PASZTOR E C,CARMICHAEL O T. Learning low-level vision[J].International Journal of Computer Vision,2000,(01):25-47.doi:10.1023/A:1026501619075. 被引量:1
  • 9ElAD M,DATSENKO D. Example-based regularization deployed to super-resolution reconstruction of single image[J].Computer Journal,2007,(01):15-30. 被引量:1
  • 10CHANG H,YEUNG D-Y,XIONG Y-M. Super-resolution through neighbor embedding[A].Washington,DC:IEEE Computer Society,2004.275-282. 被引量:1

二级参考文献12

  • 1Xu Zhongqiang Zhu Xiuchang.A NOVEL ALGORITHM OF SUPER-RESOLUTION RECONSTRUCTION FOR COMPRESSED VIDEO[J].Journal of Electronics(China),2007,24(3):363-368. 被引量:1
  • 2SEGALL C A, MOLINA R, KATSAGGELOS A K. High-resolution images from low-resolution compressed video[ J]. IEEE Signal Processing Magazine, 2003, 20(3): 37-48. 被引量:1
  • 3GUNTURK B K, ANTUNBASAK Y, MERSEREAU 17. Bayesian resolution-enhancement framework for transform-coded video[ C]// International Conference on hnage Processing. Washington, DC: IEEE, 2001, 2:41-44. 被引量:1
  • 4SEGALL C A, KATSAGGELOS A K, MOLINA R, et al. Bayesian resolution enhancement of compressed video[ J]. IEEE Transactions on Image Processing, 2004, 13(7): 898 -911. 被引量:1
  • 5SEGALL C A, MOLINA R. KATSAGGELOS A K, et al. Reconstruction of high-resolution image frames from a sequence of low-resolution and compressed observations[ C]// ICASSP '02: IEEE International Conference on Acoustics, Speech, and Signal Processing. Washington, DC: IEEE, 2002, 2: 1701- 1704. 被引量:1
  • 6STARK H, OSKOUI P. High-resolution image recovery from imageplane arrays, using convex projections[J]. Journal of Optical Society America A, 1989, 6(11): 1715 -1726. 被引量:1
  • 7PAEK H, KIM R. On the POCS-based post-processing technique to reduce the blocking artifacts in transform coded images[J]. IEEE Transactions on Circuits and Systems for Video Technology, 1998, 8 (3): 358-367. 被引量:1
  • 8TOM B C. Resolution enhancement of monochrome and color video using motion compensation[J]. IEEE Transactions on Image Processing, 2001, 10(2) : 278 -287. 被引量:1
  • 9LIYAKATHUNISA, KUMAR C N R, ANANTHASHAYANA V K. Super resolution reconstruction of compressed low resolution images using wavelet lifting schemes[C]// ICCEE '09: Second International Conference on Computer and Electrical Engineering. Washington, DC: IEEE. 2009:629-633. 被引量:1
  • 10NA FAN. Super-resolution using regularized orthogonal matching pursuit based on compressed sensing theory in the wavelet domain [C]// Proceedings of the 2009 Sixth International Conference on Computer Graphics, Imaging and Visualization. Washington, DC: IEEE Computer Socicty, 2009:349 - 354. 被引量:1

同被引文献40

  • 1刘诚,李亚军,赵长海,阎华,赵洪淼.气象卫星亚像元火点面积和亮温估算方法[J].应用气象学报,2004,15(3):273-280. 被引量:49
  • 2刘扬阳,金伟其,苏秉华,张楠.超分辨力图像处理技术进展及在遥感中的应用[J].红外与激光工程,2005,34(1):70-73. 被引量:13
  • 3ZHANG X,WU X. Image interpolation by adaptive 2-D autoregres-sive modeling and soft-decision estimation [ J]. IEEE Transactionson Image Processing, 2008,17(6): 887 - 896. 被引量:1
  • 4MARQUINA A, OSHER S J. Image super-resolution by TV-regular-ization and Bregraan iteration [ J]. Journal of Scientific Computing,2008,37(3): 367 -382. 被引量:1
  • 5TAI Y W, LIU S, BROWN M S, et al. Super resolution using edgeprior and single image detail synthesis[ Cj // CVPR 2010: Proceed-ings of the 2010 IEEE Conference on Computer Vision and PatternRecognition. Piscataway: IEEE Press, 2010: 2400 - 2407. 被引量:1
  • 6FREEMAN W T, JONES T R,PASZTOR E C. Example-based su-per-resolution [J]. Computer Graphics and Applications, 2002, 22(2): 56-65. 被引量:1
  • 7CHANG H, YEUNG D Y, XIONG Y. Super - resolution throughneighbor embedding [ C]// CVPR 2004: Proceedings of the 2004IEEE Computer Society Conference on Computer Vision and PatternRecognition. Piscataway: IEEE Press, 2004. : 275 -282. 被引量:1
  • 8GAO X,ZHANG K, TAO D, et al. Joint learning for single-imagesuper-resolution via a coupled constraint [ J]. IEEE Transactions onImage Processing, 2012, 21(2): 469 -480. 被引量:1
  • 9YANG J, WRIGHT J, HUANG T S, et al. Image super-resolutionvia sparse representation [ J]. IEEE Transactions on Image Process-ing, 2010,19(11): 2861 -2873. 被引量:1
  • 10ZEYDE R, ELAD M, PROTTER M. On single image scale-up u-sing sparse-representations [ C]// Proceedings of the 7th Internation-al Conference, LNCS 6920. Berlin: Springer-Verlag, 2012: 711 -730. 被引量:1

引证文献7

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部