期刊文献+

基于抗噪声局部二值模式的纹理图像分类 被引量:13

Texture Image Classification with Noise-Tolerant Local Binary Pattern
下载PDF
导出
摘要 局部二值模式(local binary pattern,LBP)特征是一种简单有效的纹理特征描述符,但是它的抗噪声能力较差.针对这一问题,提出一种对噪声较为鲁棒的纹理特征表示方法——抗噪声的完整增强局部二值模式(noise-tolerant complete enhanced LBP,CELBPNT).该特征基于局部二值模式特征,对光照、旋转和噪声均具有较好的鲁棒性.其提取过程如下:1)根据LBP中各模式的结构和出现频率对特征中的模式重新分类,提出增强局部二值模式(enhanced LBP,ELBP)特征;2)添加差值的模值信息与中心像素信息,并根据图像尺寸自适应地调整其中的阈值,提出完整增强局部二值模式(complete ELBP,CELBP)特征;3)进一步将该特征进行多尺度下的表示,从而最终提出具有抗噪声能力的纹理特征——CELBPNT.通过在常用的纹理数据库上添加不同强度和不同类型噪声的情况进行实验,结果表明:CELBPNT不仅能够显著提升无噪声纹理图像的分类性能,而且对含有噪声的纹理图像分类也有显著的性能提高. The local binary pattern (LBP) is a simple and effective texture descriptor .However ,it is very sensitive to image noise . To deal with this problem ,we propose an efficient texture feature named noise-tolerant complete enhanced local binary pattern (CELBPNT ) to enhance the discriminant ability against the noisy texture images .Derived from the local binary pattern ,CELBPNT is robust to illumination ,rotation and noise .Its feature extraction process involves the following three steps . First ,different patterns in LBP are reclassified to form an enhanced LBP (ELBP) based on their structures and frequencies .Then ,in order to describe the local feature completely and sufficiently , the difference of modulus value and center pixel information is added to ELBP to develop a complete ELBP feature ,named CELBP .Meanwhile ,the adaptive threshold of CELBP is determined by the image size .Finally ,CELBPNT is proposed by using the favorable characteristics of multi-scale analysis on CELBP .The features are evaluated on the popular Outex database with different intensity and different types of noise .Extensive experimental results show that CELBP NT not only demonstrates better performance to a number of state-of-the-art LBP variants under no-noise condition ,but also effectively improves the performance of texture classification containing noise due to its high robustness and distinctiveness .
作者 冀中 聂林红
出处 《计算机研究与发展》 EI CSCD 北大核心 2016年第5期1128-1135,共8页 Journal of Computer Research and Development
基金 国家自然科学基金项目(61271325 61472273) 天津大学"北洋学者-青年骨干教师"基金项目(2015XRG-0014)~~
关键词 局部二值模式 图像噪声 纹理图像分类 特征提取 多尺度分析 local binary pattern (LBP) image noise texture image classification feature extraction multi-scale analysis
  • 相关文献

参考文献3

二级参考文献46

  • 1王建宇,陈熙霖,高文,赵德斌.背景变化鲁棒的自适应视觉跟踪目标模型[J].软件学报,2006,17(5):1001-1008. 被引量:12
  • 2胡斌,何克忠.计算机视觉在室外移动机器人中的应用[J].自动化学报,2006,32(5):774-784. 被引量:16
  • 3何东健.数字图像处理[M].西安:西安电子科技大学出版社,2006. 被引量:1
  • 4Kaplan L M. Analysis of Muhiplicative Speckle Models for Template-based SAR ATR[J]. IEEE Transactions on Aerospace and Electronic Systems, 2001, 37(4): 1424-1432. 被引量:1
  • 5Harmsen J. Higher-order Statistical Steganalysis of Palette Images[C]//Proc. of SPIE'03. [S. l.]: IEEE Press, 2003. 被引量:1
  • 6Alex E Greenspun Image Database[EB/OL]. (1997-04507). http:// philip.greenspun.com/. 被引量:1
  • 7Fridrich J, Goljan M. Detecting LSB Steganography in Color and Gray-scale Image[J]. IEEE Multimedia, 2001, 8(4): 22-28. 被引量:1
  • 8Avidan S. Ensemble tracking [J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2007, 29(2): 261-271. 被引量:1
  • 9Collins R, Liu Y, Leordeanu M. Online selection of discriminative tracking features [J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2005, 27 (10) : 1631 -1643. 被引量:1
  • 10Grabner H, Bischof H. On-line boosting and vision [C] // Proc of IEEE Computer Vision and Pattern Recognition. New York: IEEE Computer Society, 2006:260-267. 被引量:1

共引文献8

同被引文献86

引证文献13

二级引证文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部