期刊文献+

基于颜色通道融合特征的现勘图像分类算法 被引量:1

Crime scene investigation image classification algorithm based on color channel fusion features
下载PDF
导出
摘要 针对单一特征难以精确地表达复杂图像内容的问题,提出基于颜色通道融合特征的现勘图像分类算法。首先,分别在H,S和V三个颜色通道上提取图像的LBP特征和GIST特征,并利用颜色空间信息进行加权融合;然后,将融合的LBP和GIST特征串联形成新的特征描述向量,并用于训练分类器以实现精确地现勘图像分类。在现勘图像数据库上,大量实验结果显示提出的现勘图像分类算法优于基于单一特征的图像分类正确率。 A crime scene investigation(CSI)classification algorithm based on color channel fusion feature is proposed to solve the problem that it is difficult for a single feature to accurately express the complex image content.The LBP features and GIST features of the image are extracted from the three color channels of H,S and V respectively,and the weight fusion of them is performed with the color space information.The fused LBP and GIST features are connected in series to form a new feature description vector,which is used to train the classifier to realize accurate classification of the CSI image.On the CSI image database,a large number of experimental results show that the classification accuracy of the proposed CSI image classification algorithm is better than that of image classification based on a single feature.
作者 刘颖 张倩楠 王富平 雷研博 公衍超 杨凡超 LIU Ying;ZHANG Qiannan;WANG Fuping;LEI Yanbo;GONG Yanchao;YANG Fanchao(Institute of Image and Information Processing,Xi’an University of Posts and Telecommunications,Xi’an 710121,China;Key Laboratory of Electronic Information Application Technology for Scene Investigation,Ministry of Public Security,Xi’an 710121,China;Key Laboratory of Spectral Imaging Technology,Xi’an Institute of Optics and Precision Mechanics,Chinese Academy of Sciences,Xi’an 710119,China)
出处 《现代电子技术》 北大核心 2020年第4期67-72,共6页 Modern Electronics Technique
基金 国家自然科学基金资助项目(61671733):国家自然科学基金资助项目(61802305) 西安邮电大学创新基金项目(CXJJLI2018012)
关键词 现勘图像分类 颜色通道 特征提取 特征融合 训练分类器 实验分析 crime scene investigation image classification color channel feature extraction feature fusion training classifier experimental analysis
  • 相关文献

参考文献3

二级参考文献20

  • 1Sivic J, Zisserman A. Video google: a text retrieval approach to object matching in videos [ C ] //Proceedings of International Conference on Computer Vision. Washington DC: [ s. n. ], 2003,1470-1477. 被引量:1
  • 2Jurie F, Triggs B. Creating efficient codebooks for visual recogni- tion [ C ]//Proceedings of International Conference on Computer Vision. Beijing: [s. n. ], 2005: 604-610. 被引量:1
  • 3Lazebnik S, Schmid C. Beyond bags of features : spatial pyramid matching for recognizing natural scene categories [ C ]//Procee- dings of IEEE Conference on Computer Vision and Pattern Recog- nition. New York: IEEE, 2006, 2:2169-2178. 被引量:1
  • 4Oliva A, Torralba A. Modeling the shape of the scene a holistie representation of the spatial envelope [ J ]. International Journal in Computer Vision, 2001,42(3) : 145-175. 被引量:1
  • 5Oliva A, Torralba A. Building the gist of a scene: the role of global image features in recognition [ J ]. Progress in Brain Research : Visual Perception, 2006, 155 : 23-36. 被引量:1
  • 6Muller K R, Mika S, Ratsch G, et al. An introduction to kernel based learning algorithms [ J]. IEEE Transactions on Neural Net- works, 2001, 12(2) : 181-201. 被引量:1
  • 7Hofman T, Sch~lkopf B. Kernel methods in machine learning [J]. The Annals of Statistics, 2008, 36(3) : 1171-1220. 被引量:1
  • 8Vapnik V N. Statistical Learning Theory [ M ]. New York: Wiley, 1998. 被引量:1
  • 9Scholkopf B, Smola A J. Learning with Kernels [ M ]. Massa- chusetts: The MIT Press, 2002. 被引量:1
  • 10Daugman J. Uncertainty relation for resolution in space, spatial, frequency, and orientation optimized by two-dimensional visual cortical filters [ J]. Journal of the Optical Society of America, 1985, 2(7) : 1160-1169. 被引量:1

共引文献46

同被引文献6

引证文献1

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部