期刊文献+

基于Kinect和金字塔特征的行为识别算法 被引量:13

Human behavior recognition based on Kinect and pyramid features
原文传递
导出
摘要 提出了一种基于Kinect和金字塔特征的行为识别算法。在算法中,Kinect不仅能够获得RGB信息,还能获得与RGB信息对应的深度信息;而金字塔特征不仅描述了人体行为的全局形状和局部细节信息,而且还描述了人体行为的空间信息。通过不同核函数的支持向量机(SVM)分类器在具有挑战性的DHA数据集的试验结果表明,金字塔特征在RGB和深度图上都能获得令人满意的性能,且当深度特征和RGB特征融合时,其性能获得了进一步的提高,识别率达到96.2%,远高于一些具有代表性的行为描述子。 Although many different behavior recognition algorithms have been prop osed,most of them are applied into RGB video sequences.What is worse,their performance is not satisfactory .Thus,in this paper a behavior recognition algorithm based on Kinect and pyramid features is proposed,in which Kinect is able to obtain RGB information,and the corresponding depth information is very help ful for our task.What is more, pyramid features not only describe the global shape and the local details of hu man behavior,but also depict the spatial information of human behavior.The combination of multi-kernel support v ector machine (SVM) classifier in challenging DHA dataset experimental results show that the performance of pyramid features on bo th RGB and the depth channels is satisfactory,and when these features are fu sed,its recognition rate is further improved to 96.2%,whose performance is much better than that of the state of the art behavior descriptors.
出处 《光电子.激光》 EI CAS CSCD 北大核心 2014年第2期357-363,共7页 Journal of Optoelectronics·Laser
基金 国家自然科学基金(61202168 61201234)资助项目
关键词 行为识别 金字塔特征 KINECT 深度图 支持向量机(SVM) behavior recognition pyramid feature Kinectl depth map support vector machine (SVM)
  • 相关文献

参考文献16

  • 1Laptev I, Lindeberg T. Space-time interest points[A]. Proc. of the IEEE International Conference on Computer Vision (ICCV) [C]. 2003,432-439. 被引量:1
  • 2Liu J G, Shah M. Learning human actions via information maximization[A]. Proc. of the iEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR) [C]. 2008.1-8. 被引量:1
  • 3Dollar P, Rabaud V, Cottrell G. Behavior recognition via sparse spatio-temporal features[A]. Proc. of the IEEE In- ternational Workshop on Visual Surveillance and Per- formance Evaluation of Tracking and Surveillance[C]. 2005,65-72. 被引量:1
  • 4LI Wan-qing, ZHANG Zhen-you, LIU Zi-cheng. Action rec-ognition based on a bag of 3D points[A]. Proc. of the Computer Vision and Pattern Recognition Workshops (CVPRW) [C]. 2010,9-14. 被引量:1
  • 5LIN Yan-ching, HU Min-chun, CHENG Wen-hua, et al. Hu- man action recognition and retrieval using sole depth in- formation[A]. Proc. of the 20th ACM International Confer- ence on Multimedia (MM 2012)[C]. 2012,1053-1056. 被引量:1
  • 6李红波,丁林建,冉光勇.基于Kinect深度图像的人体识别分析[J].数字通信,2012,39(4):21-26. 被引量:25
  • 7Megavannan V,Agarwal B. Human action recognition us- ing depth maps[A]. Proc. of the Signal Processing and Communications (SPCOM) [C]. 2012, 1-5. 被引量:1
  • 8LU Xia. Human detection and action recognition using depth information by Kinect[D]. USA,Austin: The Univer- sity of Texas at Austin,2012,5. 被引量:1
  • 9Dalai N, Triggs B. Histograms of oriented gradients for hu- man detection [A], Proc. of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR) [C]. 2005,1 : 886-893. 被引量:1
  • 10Bosch A,Zisserman A, Munoz X. Representing shape with a spatial pyramid kernel[A]. Proc. of the 6th ACM Inter- national Conference on Image and Video Retrieval, Am- sterdam, Netherlands[C]. 2007,401-408. 被引量:1

二级参考文献40

  • 1肖冰,王映辉.人脸识别研究综述[J].计算机应用研究,2005,22(8):1-5. 被引量:53
  • 2许廷发,韦岗,倪国强.基于并行结构的Gabor小波神经网络算法及应用[J].光学精密工程,2006,14(2):247-250. 被引量:8
  • 3王晓光,苏群星.虚拟维修通用仿真软件系统的设计[J].计算机仿真,2006,23(8):266-268. 被引量:11
  • 4YUKIHIRO M, TOSHINORI Y. VR-based interactive learning environment for power plant operator [ C ] //. Proceedings of the International Conference on Computers in Education. Washington DC: IEEE Computer Society, 2002 : 922-923. 被引量:1
  • 5XIA Lu, CHEN C C, AGGARWAL J K. Human detec- tion using depth information by Kinect [ EB/OL ]. ( 2011- 11-21 ) [ 2012-04-18 ] . http ://download. csdn. net/down- load/guoming0000/3820813. 被引量:1
  • 6ABHISHEK K. Skeletal tracking using Microsoft Kinect [ J]. Methodology, 2010 : 1-11. 被引量:1
  • 7SHOTTON J, FITZGIBBON A, COOK M. Real-time hu- man pose recognition in parts from single depth images[EB/OL]. (2011-04-20) [20124)4-18]. http: ffwww. computer, org/csdl/proceedings/cvpr/2011/0394/00/0599 5316-abs. html. 被引量:1
  • 8FANELLI G, WEISE T, GALL J. Real time head pose estimation from consumer depth cameras [ EB/OL ]. (2011-11-20) [ 2012434-18 ] . http://wenku, baidu, com/ view/4df718b569dcSO22aaeaO017, html. 被引量:1
  • 9CANNY J. A computational approach to edge detection [ J]. Pattern Analysis and Machine Intelligence, 1986,8 (6) :679-698. 被引量:1
  • 10GREST D, WOETZEL J, KOCH R. Nonlinear body pose estimation from depth images [ J ]. Computer Science, 2005,3663:285-292. 被引量:1

共引文献60

同被引文献130

  • 1Boisvert J,Shu C,Wuhrer S,et al.Three-dimensional human shape inference from silhouettes:Reconstruction and validation[J].Machine Vision and Applications,2013,24(1):145-157. 被引量:1
  • 2Wu D,Shao L.Silhouette analysis-based action recognition via e xploiting human poses[J].IEEE Transactions on Circuits and Systems for Video Technology,2013,23(2): 236-243. 被引量:1
  • 3Vishwakarma,Agrawal A.A survey on activity recognition and beha vior understanding in video surveillance[J].The Visual Computer,2013,29(10):983-1009. 被引量:1
  • 4Parvathy R,Thilakan S,Joy M,et al.Anomaly detection using motio n patterns computed from optical flow[A].Proc.of IEEE International Conference on Computer Society[C].India:Kerala,2013,58-61. 被引量:1
  • 5Chaudhry R,Avichandran A,Hager G,et al.Histograms of oriented o ptical flow and binet-cauchy kernels on nonlinear dynamical systems for the recognition of human actions[A].Proc.of IE EE International Conference on Computer Society[C].2009, 1932-1939. 被引量:1
  • 6Laptev I,Marszalek M,Schmid C,et al.Learning realistic human ac tions from movies[A].Proc.of IEEE International Conference on Computer Vision and Patter[C].2008,1-8. 被引量:1
  • 7Salmane H,Ruichek Y,Khoudour L.Object tracking using Harris cor ner points based optical flow propagation and Kalman filter[A].Proc.of IEEE International Conference on Intelligent Tran sportation Syst[C].2011,67-73. 被引量:1
  • 8Dollar P,Rabaud V,Cottrell G,et al.Behavior reco gnition via sparse spatio-temporal features[A].Proc.of IEEE International Conference on Workshop[C].2005,65-72. 被引量:1
  • 9Wang J,Chen Z,Wu Y.Action recognition with multi scale spatio-temporal contexts[A].Proc.of IEEE International Conference on Computer Society[C].2011,3185-3192. 被引量:1
  • 10Chen L,Wei H,Ferryman J.A survey of human motion analysis using depth imagery[J].Pattern Recognition Letters,2013,34(15):1995-2006. 被引量:1

引证文献13

二级引证文献76

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部