期刊文献+

多模式共生的彩色纹理图像分类方法 被引量:2

Texture classification method based on co-occurrence of multi-pattern
下载PDF
导出
摘要 针对单一方法进行纹理图像分类时易受旋转、光照等干扰的情况,提出了一种结合颜色特征和纹理特征的共生纹理分类方法。将图像转换到HSV颜色空间后,对H通道使用SLIOP算法以及对S和V通道用CLBP算法提取特征,然后将各自提取到的特征进行串联共生,最后利用支持向量机对纹理图像进行分类。基于被广泛使用的纹理图像数据库,对提出方法与其他典型分类算法进行实验对比,分析表明在分类的准确率和计算效率上获得了较大提升。实验结果表明,提出了方法具有较强的旋转不变性、光照不变性以及抗噪性。 This paper proposed a co-occurrence texture classification method to improve the rotation invariance and illumination robustness by jointing the texture features and the color features.Firstly,the method transformed the color space to HSV space.Secondly,it utilized simplified local intensity order pattern and completed local binary pattern to extract the color features in the H channel and the texture features in both S channel and V channel respectively.Thirdly,it concatenated these features as the descriptors of a color texture image.At last,it adopted SVM for classification.Based on experiments applying to the popular image datasets,it could be conclude that the proposed method possessed better computational efficiency and identification precision than other classical algorithms.Experiment results prove that the proposed method possesses rotation invariance and illumination robustness when it is used classification of color texture images.
作者 李君伟 刘光帅 刘望华 陈晓文 Li Junwei;Liu Guangshuai;Liu Wanghua;Chen Xiaowen(School of Mechanical Engineering,Southwest Jiaotong University,Chengdu 610031,China)
出处 《计算机应用研究》 CSCD 北大核心 2020年第7期2185-2188,共4页 Application Research of Computers
基金 国家自然科学基金资助项目(51275431) 四川省科技支撑计划项目(2015GZ0200)。
关键词 纹理分类 特征提取 HSV颜色空间 共生 简化局部像素强度模式 完备局部二值模式 texture classification feature extraction HSV color space co-occurrence simplified local intensity order pattern(SLIOP) completed local binary pattern(CLBP)
  • 相关文献

参考文献3

二级参考文献28

  • 1荆浩,陈学佺,顾志伟.一种基于边缘特征的海岸线检测方法[J].计算机仿真,2006,23(8):89-93. 被引量:14
  • 2Li S Z, Chu R, Liao S, et al. Illumination invariant facerecognition using near-infrared images [ J ] . IEEE Transac-tions on Pattern Analysis and Machine Intelligence, 2007 ,29(4) :627-639. 被引量:1
  • 3Tan X, Triggs B. Enhancedlocal texture feature sets forface recognition under difficult lighting conditions [ J ].IEEE Transactions on Image Processing, 2010,19 (6):1635-1650. 被引量:1
  • 4Liu Z, Liu C. Fusion of color, local spatial and global fre-quency information for face recognition [ J ]. Pattern Recog-nition, 2010,43(8) :2882-2890. 被引量:1
  • 5Zhang J, Marszalek M, Lazebnik S, et al. Local featuresand kernels for classification of texture and object catego-ries :A comprehensive study [ J ] . International Journal ofComputer Vision, 2007 ,73( 2) ;213-238. 被引量:1
  • 6Rodriguez Y, Marcel S. Face authentication using adaptedlocal binary pattern histograms [ C ] // Proceedings of the9th European Conference on Computer Vision. 2006,4:321-332. 被引量:1
  • 7Hennings-Yeomans P H, Kumar R V K V, Baker S A. Ro-bust low-resolution face identification and verification usinghigh-resolution features [ C ] // Proceedings of the 16thIEEE International Conference on Image Processing. 2009 :33-36. 被引量:1
  • 8Zliu F,Zhang X, Hu Y. Gabor filter approach to joint fea-ture extraction and target recognition [ J ]. IEEE Transac-tions on Aerospace and Electronic Systems, 2009,45( 1 ):17-30. 被引量:1
  • 9Liu C, Wechsler H. Gabor feature based classification u-sing the enhanced Fisher linear discriminant model for facerecognition[ J] . IEEE Transactions on Image Processing,2002,11(4) :467476. 被引量:1
  • 10Ahonen T, Hadid A, Pietikainen M. Face description withlocal binary pattern : Application to face recognition [ J ].IEEE Transactions on Pattern Analysis and Machine Intelli-gence, 2006,28(12) :2037-2041. 被引量:1

共引文献39

同被引文献4

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部