期刊文献+

基于神经网络误差补偿的磁编码器细分算法 被引量:5

A Magnetic Encoder Subdivision Algorithm Based on Neural Network Error Compensation
下载PDF
导出
摘要 提出了一种基于径向基神经网络误差补偿的磁编码器细分算法.首先对双路正余弦信号进行差值运算并分区,然后采用最小二乘法的线性回归分析获得角度计算函数,最后运用径向基神经网络建立误差模型并进行误差补偿.仿真结果表明,该算法有效提高了磁编码器的输出精度与分辨率,经过补偿后精度为0.09°,分辨率可达到4 096p/r. This paper presents a magnetic encoder subdivision algorithm based on radial basis neural network error compensation.At first,to calculate out the difference between the dual cosine signal and partition,then using least squares linear regression analysis to obtain the output angle calculation function.Finally,using the radical basis neural network to establish the error model and compensate the error.The simulation results show that the proposed algorithm can effectively improve the output precision and resolution of the magnetic encoder,after compensation,the accuracy is 0.09°and the resolution can reach 4 096p/r.
出处 《杭州电子科技大学学报(自然科学版)》 2016年第2期52-56,61,共6页 Journal of Hangzhou Dianzi University:Natural Sciences
关键词 磁编码器 最小二乘法 径向基神经网络 误差补偿 magnetic encoder least square method radical basis neural network error compensation
  • 相关文献

参考文献11

二级参考文献50

  • 1洪小圆,王鹿军,吕征宇.一种新颖的正弦正交编码器细分方法[J].电源学报,2011,9(1):7-11. 被引量:10
  • 2李洪,冯长有,丁林辉.光电轴角编码器细分误差动态评估方法[J].传感技术学报,2005,18(4):927-930. 被引量:19
  • 3齐永岳,赵美蓉,林玉池.提高激光干涉测量系统精度的方法与途径[J].天津大学学报,2006,39(8):989-993. 被引量:15
  • 4陈晓荣,陈淑芬,杨甫勤.增量式编码器的相位编码细分研究[J].仪器仪表学报,2007,28(1):132-135. 被引量:19
  • 5Kunio Miyashita, Tadashi Takahashi, Munesada Yamanaka. Features of a Magnetic Rotary Encoder [ J ]. IEEE Transactions on Magnetics, 1987, 23(5) : 2182-2184. 被引量:1
  • 6Hung Van Hoang, Jae Wook Jeon. Signal Compensation and Extraction of High Resolution Position for Sinusoidal Magnetic Encoders[J]. International Conference on Control, Automation and Systems2007, 2007, (10) : 1368-1373. 被引量:1
  • 7Mohieddine Benammar, Lazhar Ben brahim, Mohd. A. Alhamadi, Mohamed El Naimi. A Novel Converter for Sinusoidal Eneoders[J]. IEEE SENSORS2006, 2006, (10): 1415-1418. 被引量:1
  • 8Kok Kiong Tan, Kok Zuea Tang. Adaptive Online Correction and Interpolation of Quadrature Encoder Signals Using Radial Basis Functions[ J]. IEEE Transactions on Control Systems Technology, 2005, 5(3): 370-377. 被引量:1
  • 9K. K. Tan, Huixing X. Zhou, Tong Heng Lee. New Interpolation Method for Quadrature Encoder Signals[J]. IEEE Transactions on Instrumentation and Measurement, 2002, 10(5 ) : 1073- 1079. 被引量:1
  • 10Xiaobo Hu, Ronald G. Harber, Steven C. Bass. Expanding the Range of Convergence of the CORDIC Algorithm[J]. IEEE Transactions on Computers, 1991, 40(1) : 13-21. 被引量:1

共引文献152

同被引文献44

引证文献5

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部