期刊文献+

Placement Scheme of Numerous Laser Beams in the Context of Fiber-Based Laser Fusion

Placement Scheme of Numerous Laser Beams in the Context of Fiber-Based Laser Fusion
下载PDF
导出
摘要 A simple scheme based on the uniform distribution for the placement of numerous laser beams in the context o~ fiber-based laser fusion is proposed. It is theoretically demonstrated that all modes of the geometrical factor can be eliminated if sufflcient laser beams are uniformly distributed on the sphere. In the case of a finite number of laser beams, a quasi-uniform distribution of beams can be achieved based on the equal area subdivision algorithm. Numerical simulations indicate that with the increasing number of laser beams, the order of the dominant geometrical mode increases, and the irradiation nonuniformity decreases accordingly. A simple scheme based on the uniform distribution for the placement of numerous laser beams in the context o~ fiber-based laser fusion is proposed. It is theoretically demonstrated that all modes of the geometrical factor can be eliminated if sufflcient laser beams are uniformly distributed on the sphere. In the case of a finite number of laser beams, a quasi-uniform distribution of beams can be achieved based on the equal area subdivision algorithm. Numerical simulations indicate that with the increasing number of laser beams, the order of the dominant geometrical mode increases, and the irradiation nonuniformity decreases accordingly.
出处 《Chinese Physics Letters》 SCIE CAS CSCD 2014年第9期99-102,共4页 中国物理快报(英文版)
  • 相关文献

参考文献19

  • 1Temporal M and Canaud B 2011 Eur. Phys. J. D 65 447. 被引量:1
  • 2Temporal M and Canaud B 2009 Eur. Phys. J. D 55 139. 被引量:1
  • 3Temporal M, Canaud B, Garbett W, Philippe F and Ramis R 2013 Eur. Phys. J. D 61 1. 被引量:1
  • 4Rarnis R, Temporal M, Canaud B and Brandon V 2013 EPJ. Web Conf. 59 02017. 被引量:1
  • 5Temporal M, Canaud B, Garbett W J and Ramis R 2014 Phys. Plasmas 21 012710. 被引量:1
  • 6Bodner S 1981 J. Fusion Energ. 1 221. 被引量:1
  • 7Wang L F, Ye W Hand Li Y J 2010 Chin. Phys. Lett. 27 025203. 被引量:1
  • 8Ye W H, Wang L F and He X T 2010 Chin. Phys. Lett. 27 125203. 被引量:1
  • 9Skupsky S, Short R W, Kessler T, Craxton R S, Letzring S and Soures J M 1989 J. Appl. Phys. 66 3456. 被引量:1
  • 10Tsubakimoto K, Yamanaka C, Miyanaga N, Nakatsuka M, Jitsuno T and Nakai S 1996 AlP Conf. Proc. 369 975. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部