期刊文献+

一种基于HOG与LSS融合的行人检测算法 被引量:3

Method fordeteting pedestrian based on HOG and LSS characteristics
下载PDF
导出
摘要 针对传统HOG特征的行人检测方法中因遮挡及复杂环境存在较高漏检误检情况,建立了一种基于HOG和局部自相似(LSS)特征融合的行人检测算法。利用LSS反映图像内在几何布局和形状属性的特性,用主成分分析(PCA)将HOG和LSS两类特征在实数域降维,再将两种特征组合成新特征,结合线性SVM分类器进行行人检测。实验采用INRIA数据库和Daimler数据库作为训练集训练SVM,用730幅监控视频帧图片作测试集,将该方法与基于传统HOG特征的行人检测方法做对比,结果表明该方法平均漏检误检率降低16%,检测效果优于基于传统HOG特征的行人检测方法。 Aiming at the higher misdetection and error detection due to occlusion and complex environment in pedestrian detection based on traditional HOG features,this paper puts forward a kind of a pedestrian detection algorithm based on a fusion of HOG and local self-similar feature( LSS). it uses principal component analysis( PCA) to reduce dimensionalities of traditional HOG feature and self similar( LSS) feature which reflects the image inherent geometric layout and shape properties in the real domain respectively,then combines the two features into a new feature. Finnally,it builds a linear SVM classifier for pedestrian detection. The experiments uses INRIA database and Daimler database as training set for SVM,and chooses 730 images from a surveillance video as testing set. Comparing the method in this article to the pedestrian detection method based on traditional HOG feature,the results show that the average detection and error detection rate of the method in this article is reduced by 16%,better than the detection method for pedestrian detection based on traditional HOG features.
出处 《微型机与应用》 2016年第8期37-39,43,共4页 Microcomputer & Its Applications
关键词 行人检测 主成分分析 梯度直方图 局部自相似 pedestrian detection PCA HOG LSS
  • 相关文献

参考文献7

二级参考文献32

  • 1ZHANG K, ZHANG L, YANG M H. Real-time compres- sive tracking[M]. Computer Vision- ECCV 2012. Springer Berlin Heidelberg, 2012:864-877. 被引量:1
  • 2KAI,AL Z. M|KOLAJCZYK K, MATAS J. Tracking-learning detection[J]. IEEE Transactions on Pattern Analysis andMachine Intelligence, 2012,34(7): 1409-1422. 被引量:1
  • 3NUMMIARO K,KOLLER-MEIER E,GOOL V L. An adap- tive color-based particle fiher[J]. Image and Vision Com- puting, 2003,21(!):99-110. 被引量:1
  • 4DAI.AL N, TRIGGS B. Histograms of oriented gradient for human detection[C]. Proceedings of IEEE Confence on Computer Vision and Pattern Recongnition (CVPR),200.5,1 886- 893. 被引量:1
  • 5PORIKLI F. Integral histogram: a fast way to extract his- tograms in cartesian spaces[C]. IEEE Computer Society Con- ference on Computer Vision and Pattern Recognition, CVPR 2005, 2005( 1 ):829-836. 被引量:1
  • 6Geronimo D, Lopez A. Survey of pedestrain detection for ada- vanced driver assistance systems]-J2. IEEE Trans. On Pattern Analysis and Machine Intelligence,2010,32(7): 1239-1258. 被引量:1
  • 7Luo R C,Chen O. Wireless and Pyroelectric Sensory Fusion Sys- tem for Indoor Human/Robot Localization and Monitoring[J]. IEEE/ASME Transactions on Mechatronics, 2013,18 (3) : 845- 853. 被引量:1
  • 8Uddin M-Z, Kim D-H, Kim J T, et al. An Indoor Human Activi- ty Recognition System for Smart Home Using Local Binary Pat-tern Features with Hidden Markov ModelsFJ]. Indoor and Built Environment, 2013,22 (1) 289-298. 被引量:1
  • 9Dalai N, Tfiggs B. Histograms of Oriented Gradients for Hu- manDetection[C]//Proceedings of IEEE Computer Society Con- ference On Computer Vision and Pattern Recognition. IEEE Press, 2005 : 886-893. 被引量:1
  • 10Ding Jian-hao,Wang Yi-gang,Geng Wei-dong. An HOG-CT hu- man detector with histogram-based search[J]. Multimedia Tools and Applications, 2013,63(3) :791-807. 被引量:1

共引文献55

同被引文献9

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部