期刊文献+

基于颜色自相似度特征的实时行人检测 被引量:26

Color self-similarity feature based real-time pedestrian detection
原文传递
导出
摘要 行人检测在智能监控和辅助驾驶等方面有广泛的应用。当前行人检测中主流特征是梯度方向直方图(HOG),但其计算耗时导致检测速度慢。该文提出了一种新的颜色自相似度特征(CSSF),在颜色通道上计算两个选定的矩形块的比值衡量自相似性。首先,CSSF在描述行人的结构信息的同时避免了耗时的方向梯度计算,具有速度快的优点。其次,CSSF是标量特征,能高效快速与AdaBoost级联分类器结合学习行人检测器。再次,CSSF具有尺度不变性,能快速地进行多尺度检测。针对CSSF含有的海量特征,该文提出增量AdaBoost算法有效学习CSSF特征。实验结果表明:基于CSSF的行人检测器检测精度优于传统的HOG检测器,速度提高了7倍,在640×480大小的图像上达到实时效果。 Pedestrian detection has wide applications in intelligent surveillance and driver assistant systems. The most commonly used feature in pedestrian detection algorithms is a histogram of the oriented gradient (HOG), which is computationally intensive and results in slow detection speed. This analysis uses a color self-similarity feature (CSSF) that calculates the ratio of two rectangles to measure the self-similarity on the color channels. First, when extracting the human structure information, CSSF avoids the time-consuming gradient calculation which increases the speed. Secondly, CSSF uses a scalar feature which can be efficiently integrated with the AdaBoost based cascaded classifiers learning framework for training the human detector. Thirdly, CSSF is scale invariant, resulting in fast multi-scale detection. Tests show that the CSSF based detector gives improved accuracy and 7 times speedup compared with HOG detectors and can achieve real-time processing with 640×480 images.
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2012年第4期571-574,共4页 Journal of Tsinghua University(Science and Technology)
关键词 颜色自相似性特征 行人检测 实时检测 增量AdaBoost color self-similarity eature pedestrian detection real-time detection incremental AdaBoost
  • 相关文献

参考文献12

  • 1Enzweiler M,Gavrila D M.Monocular pedestrian detection:survey and experiments[J].Pattern Analysis and MachineIntelligence,IEEE Transactions on,2009,31(12):2179-2195. 被引量:1
  • 2Viola P,Jones M J.Robust real-time face detection[J].International Journal of Computer Vision,2004,57(2):137-154. 被引量:1
  • 3Friedman J,Hastie T,Tibshirani R.Additive logisticregression:A statistical view of boosting[J].Annals ofStatistics,2000,28(2):337-374. 被引量:1
  • 4Viola P,Jones M J,Snow D.Detecting pedestrians usingpatterns of motion and appearance[J].International Journalof Computer Vision,2005,63(2):153-161. 被引量:1
  • 5Dalal N,Triggs B.Histograms of oriented gradients forhuman detection[C] //Computer Vision and PatternRecognition(CVPR),IEEE Computer Society Conference on.2005:886-893. 被引量:1
  • 6Vapnik V,Vladimir N.The Nature of Statistical LearningTheory[M].Berlin,Germany:Springer-Verlag,1995:138-151. 被引量:1
  • 7Qiang Z,Mei-Chen Y,Kwang-Ting C,et al.Fast humandetection using a cascade of histograms of oriented gradients[C] //Computer Vision and Pattern Recognition(CVPR),IEEE Computer Society Conference on.2006:1491-1498. 被引量:1
  • 8Zhe L,Gang H,Davis L S.Multiple instance feature forrobust part-based object detection[C] //Computer Visionand Pattern Recognition(CVPR),IEEE Computer SocietyConference on.2009:405-412. 被引量:1
  • 9Dollar P,Wojek C,Schiele B,et al.Pedestrian detection:Anevaluation of the state of the art[J].Pattern Analysis andMachine Intelligence,IEEE Transactions on,2012,34(4):743-761. 被引量:1
  • 10Walk S,Majer N,Schindler K,et al.New features andinsights for pedestrian detection[C] //Computer Vision andPattern Recognition(CVPR),IEEE Computer SocietyConference on.2010:1030-1037. 被引量:1

同被引文献224

引证文献26

二级引证文献95

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部