期刊文献+

Mapping of three QTLs for seed setting and analysis on the candidate gene for qSS-1 in rice(Oryza sativa L.) 被引量:2

Mapping of three QTLs for seed setting and analysis on the candidate gene for qSS-1 in rice(Oryza sativa L.)
下载PDF
导出
摘要 The lower seed setting is one of the major hindrances which face grain yield in rice. One of the main reasons to cause low spikelet fertility (seed setting) is male sterility or pollen abortion. Notably, pollen abortion has been frequently observed in advanced progenies of rice. In the present study, 149 BC2F6 individuals with significant segregation in spikelet fertility were generated from the cross between N040212 (indica) and Nipponbare (japonica) and used for primary gene mapping. Three QTLs, qSS-1, qSS-7 and qSS-9 at chromosomes 1, 7 and 9, respectively, were found to be associated with seed setting. The recombinant analysis and the physical mapping information from publicly available resources exhibited that the qSS-1, qSS-7 and qSS-9 loci were mapped to an interval of 188, 701 and 3741 kb, respectively. The seed setting responsible for QTL qSS-1 was further fine mapped to 93.5 kb by using BC2F7 population of 1 849 individuals. There are 16 possible putative genes in this 93.5 kb region. Pollen vitality tests and artificial pollination indicated that the male gamete has abnormal pollen while the female gamete was normal. These data showed that low seed setting rate relative to qSS-1 may be caused by abnormal pollen grains. These results will be useful for cloning, functional analysis of the target gene governing spikelet fertility (seed setting) and understanding the genetic bases of pollen sterility. The lower seed setting is one of the major hindrances which face grain yield in rice. One of the main reasons to cause low spikelet fertility (seed setting) is male sterility or pollen abortion. Notably, pollen abortion has been frequently observed in advanced progenies of rice. In the present study, 149 BC2F6 individuals with significant segregation in spikelet fertility were generated from the cross between N040212 (indica) and Nipponbare (japonica) and used for primary gene mapping. Three QTLs, qSS-1, qSS-7 and qSS-9 at chromosomes 1, 7 and 9, respectively, were found to be associated with seed setting. The recombinant analysis and the physical mapping information from publicly available resources exhibited that the qSS-1, qSS-7 and qSS-9 loci were mapped to an interval of 188, 701 and 3741 kb, respectively. The seed setting responsible for QTL qSS-1 was further fine mapped to 93.5 kb by using BC2F7 population of 1 849 individuals. There are 16 possible putative genes in this 93.5 kb region. Pollen vitality tests and artificial pollination indicated that the male gamete has abnormal pollen while the female gamete was normal. These data showed that low seed setting rate relative to qSS-1 may be caused by abnormal pollen grains. These results will be useful for cloning, functional analysis of the target gene governing spikelet fertility (seed setting) and understanding the genetic bases of pollen sterility.
出处 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2016年第4期735-743,共9页 农业科学学报(英文版)
基金 supported by the National Key Technologies R&D Program of China during the 12th Five-Year Plan period (2013BAD01B02-15 and 2015BAD02B01) the 948 Project of Minstry of Agriculture, China (2011-G2B and 2011-G1 (2)-25)
关键词 rice (Oryza sativa L.) QTL mapping seed setting pollen sterility rice (Oryza sativa L.), QTL mapping, seed setting, pollen sterility
  • 相关文献

参考文献3

二级参考文献9

共引文献142

同被引文献17

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部