期刊文献+

多壁碳纳米管对林丹的吸附和催化转化 被引量:1

Adsorption and catalytic transformation of lindane on multi-walled carbon nanotubes
下载PDF
导出
摘要 进入环境的纳米材料对共存化学污染物的环境行为有重要影响.本文选择3种多壁碳纳米管,分别为石墨化多壁碳纳米管(G-MWCNT)、羟基化多壁碳纳米管(O-MWCNT)和氨基化多壁碳纳米管(N-MWCNT),通过批次实验研究其对林丹的吸附行为和催化转化作用.林丹在3种多壁碳纳米管上的吸附动力学符合准二级动力学模型(R2>0.997),吸附速率常数(k2)分别为0.73(G-MWCNT)、0.60(N-MWCNT)和0.28(O-MWCNT)g·mg^(-1)·h^(-1).林丹在3种多壁碳纳米管上吸附的等温线符合Freundlich经验模型(R2>0.979),不同p H条件下,吸附系数(KF)分别为28.0—30.0(G-MWCNT)、21.3—24.6(N-MWCNT)和9.1—10.2(O-MWCNT)mg1-n·Ln·g^(-1).平衡浓度为8.5 mg·L^(-1),在不同p H条件下林丹在3种多壁碳纳米管上的分配常数(Kd)分别为12.7—14.4(G-MWCNT)、8.7—9.8(N-MWCNT)和3.9—4.2(O-MWCNT)L·g^(-1).林丹是非离子型有机化合物,疏水作用在吸附过程中起主导作用,表面引入亲水性强的氨基和羟基后,N-MWCNT和O-MWCNT的吸附作用相比具有疏水性表面的G-MWCNT明显减弱.溶液的p H值(5.0—9.0)对同种多壁碳纳米管的吸附作用影响不显著.均相溶液中,林丹发生β-消去反应的准一级动力学表观速率常数kobs(0.017—10.2 d^(-1))随溶液p H值(7.0—12.0)升高而增大.N-MWCNT对林丹发生β-消去反应起催化作用,这种催化作用随p H值(7.0—9.0)升高而增强.当N-MWCNT存在时,林丹的去除率分别增加了7.5%(p H=7.0)、29.3%(p H=8.0)和30.1%(p H=9.0).在均相溶液和N-MWCNT体系中都检测到γ^(-1),3,4,5,6-五氯环己烯、1,2,4-三氯苯和1,2,3-三氯苯转化产物. Nanomaterials in the environment have great impacts on the environmental processes of co-existing chemistry contaminats. In this paper,three types of multi-walled carbon nanotubes( MWCNTs) including graphitized MWCNT( G-MWCNT),hydroxylated MWCNT( O-MWCNT)and aminated MWCNT( N-MWCNT) were studied for their adsorption and catalytic transformation of lindane using batch experiments. Adsorption kinetics of lindane on the three MWCNTs followed pseudo-second-order kinetic model( R^2〉 0. 997),and the adsorption rate constants( k2) of G-,Nand O-MWCNT were 0. 73,0. 60 and 0. 28 g·mg^-1·h^-1,respectively. Freundlich model could welldescribe the adsorption isotherms of lindane on the three MWCNTs( R^2〉 0. 979). The Freundlich affinity coefficients( KF) of G-,N- and O-MWCNT were 28. 0—30. 0,21. 3—24. 6 and 9. 1—10. 2 mg1- n·Ln·g^-1,respectively,under different pH. The distribution coefficients( Kd) of lindane on G-,N- and O-MWCNT were 12. 7—14. 4,8. 7—9. 8 and 3. 9—4. 2 L·g^-1,respectively,at lindane equilibrium concentration of 8. 5 mg·L^-1under different pH. Lindane was a typical nonionic organic chemical,and hydrophobic interactions dominantly controlled its adsorption on MWCNTs.The adsorption of lindane by N- and O-MWCNTs with hydrophilic moieties was weaker than the graphitized MWCNT with higher surface hydrophobicity. Changing the pH value of solution from 5. 0to 9. 0 didn' t affect the adsorption of lindane significantly. The pseudo-first-order rate constant( kobs) of β-elimination in homogeneous aqueous solution increased from 0. 017 to 10. 2 d^(-1)with increasing pH in the range of 7. 0—12. 0. The N-MWCNT had catalytic effects on the β-elimination of lindane at moderate to slight alkaline pH values( 7. 0—9. 0),and catalysis became faster with increasing pH value from 7. 0 to 9. 0. The removal rates of lindane were increased by 7. 5%,29.3% and 30. 1% in the presence of N-MWCNT at pH value of 7. 0,8. 0 and 9. 0,respectively.Several transform
出处 《环境化学》 CAS CSCD 北大核心 2016年第4期629-638,共10页 Environmental Chemistry
基金 教育部创新团队发展计划(IRT13024)资助~~
关键词 碳纳米管 林丹 吸附 催化转化 carbon nanotubes lindane adsorption catalytic transformation
  • 相关文献

参考文献36

  • 1APUL O G, KARANFIL T. Adsorption of synthetic organic contaminants by carbon nanotubes: A critical review[J]. Water Research, 2015, 68: 34-55. 被引量:1
  • 2LAM C W, JAMES J T, MCCLUSKEY R, et al. A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks[J]. Critical Reviews in Toxicology, 2006, 36(3): 189-217. 被引量:1
  • 3DAHM M M, EVANS D E, SCHUBAUER-BERIGAN M K, et al. Occupational exposure assessment in carbon nanotube and nanofiber primary and secondary manufacturers: Mobile direct-reading sampling[J]. Annals of Occupational Hygiene, 2013, 57(3): 328-344. 被引量:1
  • 4SHRESTHA B, ANDERSON T A, ACOSTA-MARTINEZ V, et al. The influence of multiwalled carbon nanotubes on polycyclic aromatic hydrocarbon (PAH) bioavailability and toxicity to soil microbial communities in alfalfa rhizosphere[J]. Ecotoxicology and Environmental Safety, 2015, 116: 143-149. 被引量:1
  • 5SUN W, JIANG B, WANG F, et al. Effect of carbon nanotubes on Cd(Ⅱ) adsorption by sediments[J]. Chemical Engineering Journal, 2015, 264: 645-653. 被引量:1
  • 6KUMAR R, KHAN M A, HAQ N. Application of carbon nanotubes in heavy metals remediation[J]. Critical Reviews in Environmental Science and Technology, 2014, 44(9): 1000-1035. 被引量:1
  • 7AJMANI G S, CHO H H, ABBOTT-CHALEW T E, et al. Static and dynamic removal of aquatic natural organic matter by carbon nanotubes[J]. Water Research, 2014, 59: 262-270. 被引量:1
  • 8CHEN W, LI Y, ZHU D, et al. Dehydrochlorination of activated carbon-bound 1,1,2,2-tetrachloroethane: Implications for carbonaceous material-based soil/sediment remediation[J]. Carbon, 2014, 78: 578-588. 被引量:1
  • 9CHEN W, ZHU D, ZHENG S, et al. Catalytic effects of functionalized carbon nanotubes on dehydrochlorination of 1,1,2,2-tetrachloroethane[J]. Environmental Science & Technology, 2014, 48(7): 3856-3863. 被引量:1
  • 10MACKENZIE K, BATTKE J, KOPINKE F D. Catalytic effects of activated carbon on hydrolysis reactions of chlorinated organic compounds: Part 1. γ-hexachlorocyclohexane[J]. Catalysis Today, 2005, 102: 148-153. 被引量:1

二级参考文献35

  • 1Alexandre-Franco M, Fernandez-Gonzalez C, Macfas-Garcia A, Gomez-Serrano V, 2007. Uptake of lead by carbonaceous adsorbents developed from tire rubber. Adsorption, 14(4-5): 591-600. 被引量:1
  • 2Almazan-Almazan M C, Perez-Mendoza M, Lopez-Domingo F J, Fernandez-Morales I, Domingo-Garfa M, Lopez-Garzon F J, 2007. A new method to obtain microporous carbons from PET: Characterisation by adsorption and molecular simu- lation. Microporous and Mesoporous Materials, 106(1-3): 219-228. 被引量:1
  • 3Arenillas A, Rubiera F, Parra J B, Ania C O, Pis J J, 2005. Surface modification of low cost carbons for their application in the environmental protection. Applied Surface Science, 252(3): 619-624. 被引量:1
  • 4Bansal R C, Donet B J, Stoeckli F, 1988. Active Carbon. Marcel Dekker, New York. 被引量:1
  • 5Bota A, Lazlo K, Nagy L G, Copitzky T, 1997. Comparative study of active carbons from different precursors. Lang- muir, 13(24): 6502-6509. 被引量:1
  • 6Chen W, Duan L, Zhu D Q, 2007. Adsorption of polar and nonpo- lar organic chemicals to carbon nanotubes. Environmental Science & Technology, 41(24): 8295-8300. 被引量:1
  • 7Chun Y, Sheng G Y, Chiou C T, Xing B S, 2004. Compositions and sorptive properties of crop residue-derived chars. Envi- ronmental Science & Technology, 38(17): 4649-4655. 被引量:1
  • 8Derbyshire F, Jagtoyen M, Andrews R, Rao A, Martin-Gullon I, Grulke E, 2001. Carbon Materials in Environmental Applications. Marcel Decker. New York. 被引量:1
  • 9Dubinin M M, 1975. Porous structure and adsorption properties of active carbons. In: Chmistry and Physics of Carbon (Walker P L, ed.). Marcel Dekker, New York. 2: 51-120. 被引量:1
  • 10Hayashi J, Yamamoto N, Horikawa T, Muroyama K, Gomes V G, 2005. Preparation and characterization of high-specific- surface-area activated carbons from K2COa-treated waste polyurethane. Journal of Colloid and Interface Science,281(2): 437-443. 被引量:1

共引文献3

同被引文献9

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部